Advertisement

Microgravity Science and Technology

, Volume 30, Issue 4, pp 435–443 | Cite as

Influence of Contact Angle Boundary Condition on CFD Simulation of T-Junction

  • S. Arias
  • A. Montlaur
Original Article
  • 50 Downloads

Abstract

In this work, we study the influence of the contact angle boundary condition on 3D CFD simulations of the bubble generation process occurring in a capillary T-junction. Numerical simulations have been performed with the commercial Computational Fluid Dynamics solver ANSYS Fluent v15.0.7. Experimental results serve as a reference to validate numerical results for four independent parameters: the bubble generation frequency, volume, velocity and length. CFD simulations accurately reproduce experimental results both from qualitative and quantitative points of view. Numerical results are very sensitive to the gas-liquid-wall contact angle boundary conditions, confirming that this is a fundamental parameter to obtain accurate CFD results for simulations of this kind of problems.

Keywords

Microgravity Two-phase flows Bubble generation T-junction Computational Fluid Dynamics (CFD) Contact angle 

Notes

Acknowledgements

This work has been financially supported by the Spanish Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación (Project numbers ESP2016-79196-P and MTM2013-46313-R) and the Generalitat de Catalunya (Grant number 2017-SGR-1278).

References

  1. Afkhami, S., Zaleski, S., Bussmann, M.: A mesh-dependent model for applying dynamic contact angles to VOF simulations. J. Comput. Phys. 228, 5370–5389 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. ANSYS Academic Research: Release 15.0,7, Help System, ANSYS, Inc (2014)Google Scholar
  3. Arias, S., González-Cinca, R.: Analysis of the characteristic lengths in the bubble and slug flow regimes generated in a capillary T-junction. Int. J. Multiphase Flow 87, 167–174 (2016)CrossRefGoogle Scholar
  4. Arias, S., Montlaur, A.: Numerical study and experimental comparison of two-phase flow generation in a T-junction. AIAA J. 55(5), 1565–1574 (2017)CrossRefGoogle Scholar
  5. Arias, S., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., González-Cinca, R.: Experimental study of a microchannel bubble injector for microgravity applications. Microgravity Sci. Technol. 21, 107–118 (2009)CrossRefGoogle Scholar
  6. Arias, S., González-Cinca, R., Ruiz, X., Ramírez-Piscina, L., Casademunt, J.: Characterization of the performance of a minibubble generator in conditions relevant to microgravity. Colloids Surf. A Physicochem. Eng. Asp. 365, 52–57 (2010)CrossRefGoogle Scholar
  7. Arias, S., Legendre, D., González-Cinca, R.: Numerical simulation of bubble generation in a T-junction. Comput. Fluids 56, 49–60 (2012)CrossRefMATHGoogle Scholar
  8. Baroud, C.N., Willaime, H.: Multiphase flows in microfluidics. C. R. Phys. 5, 547–555 (2004)CrossRefGoogle Scholar
  9. Bhunia, A., Pais, S.C., Kamotani, Y., Kim, I.: Bubble formation in a coflow configuration in normal and reduced gravity. AIChE J. 44, 1499–1509 (1998)CrossRefGoogle Scholar
  10. Brackbill, J.U., Kothe, D., Zemach, C.: A continuum method for modeling of surface tension. J. Comput. Phys. 100, 335–354 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. Carrera, J., Ruiz, X., Ramírez-Piscina, L., Casademunt, J., Dreyer, M.: Generation of a monodisperse microbubble jet in microgravity. AIAA J. 46(8), 2010–2019 (2008)CrossRefGoogle Scholar
  12. Di Marco, P., Grassi, W., Memoli, G., Takamasa, T., Tomiyama, A., Hosokawa, S.: Influence of electric field on single gas-bubble growth and detachment in microgravity. Int. J. Multiph. Flows. 29, 559–578 (2003)CrossRefMATHGoogle Scholar
  13. Forrester, S.E., Rielly, C.D.: Bubble formation from cylindrical, flat and concave sections exposed to a strong liquid crossflow. Chem. Eng. Sci. 53, 1517–1527 (1998)CrossRefGoogle Scholar
  14. Guo, Q., Ye, F., Guo, H., Ma, C.F.: Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications. Microgravity Sci. Technol. 29, 49–63 (2017)CrossRefGoogle Scholar
  15. Hirt, C.W., Brethour, J.M.: Moving contact lines on rough surfaces. In: 4th European Coating Symposium FloSci-Bib17-01 (2001)Google Scholar
  16. Huh, C., Scriven, L.E.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1), 85–101 (1971)CrossRefGoogle Scholar
  17. Iacona, E., Herman, C., Chang, S., Liu, Z.: Electric field effect on bubble detachment in reduced gravity environment. Exp. Therm. Fluid Sci. 31, 121–126 (2006)CrossRefGoogle Scholar
  18. McQuillen, J., Colin, C., Fabre, J.: Ground-based gas-liquid flow research in microgravity conditions: state of knowledge. Space Forums 3, 165–203 (1998)Google Scholar
  19. Malekzadeh, S., Roohi, E.: Investigation of different droplet formation regimes in a t-junction microchannel using the VOF technique in openFOAM. Microgravity Sci. Technol. 27, 231–243 (2015)CrossRefGoogle Scholar
  20. Ostrach, S.: Industrial processes influenced by gravity. NASA CR-182140 c- 21066-G (1988)Google Scholar
  21. Pampering, O., Rath, H.J.: Influence of buoyancy on bubble formation at submerged orifices. Chem. Eng. Sci. 50, 3009–3024 (1995)CrossRefGoogle Scholar
  22. Rezkallah, K.S.: Weber number based flow-pattern maps for liquid-gas flows at microgravity. Int. J. Multiphase Flow 22(6), 1265–1270 (1996)CrossRefGoogle Scholar
  23. Rosengarten, G., Harvie, D.J.E., Cooper-White, J.: Contact angle effects on microdroplet deformation using CFD. Appl. Math. Model. 30, 1033–1042 (2006)CrossRefMATHGoogle Scholar
  24. Schönfeld, F., Hardt, S.: Dynamic contact angles in CFD simulations. Comput. Fluids 38, 757–764 (2009)CrossRefMATHGoogle Scholar
  25. Shi, Y., Tang, G.H., Xia, H.H.: Lattice Boltzmann simulation of droplet formation in t-junction and flow focusing devices. Comput. Fluids 90, 155–163 (2014)MathSciNetCrossRefMATHGoogle Scholar
  26. Suo, M., Griffith, P.: Two-phase flow in capillary tubes. J. Basic Eng. 86, 576–582 (1964)CrossRefGoogle Scholar
  27. Yong-Qiang, L., Wen-Hui, C., Ling, L.: Numerical simulation of capillary flow in fan-shaped asymmetric interior corner under microgravity. Microgravity Sci. Technol. 29, 65–79 (2017)CrossRefGoogle Scholar
  28. Zuber, N., Findlay, J.: Average volumetric concentration in two-phase systems. J. Heat Transf. 87(4), 453–468 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escola d’Enginyeria de Telecomunicació i Aeroespacial de CastelldefelsUniversitat Politècnica de CatalunyaCastelldefelsSpain
  2. 2.Escola d’Enginyeria de Telecomunicació i Aeroespacial de Castelldefels, Laboratori de Càlcul Numèric (www-lacan.upc.edu)Universitat Politècnica de CatalunyaCastelldefelsSpain

Personalised recommendations