Advertisement

The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy

  • 352 Accesses

  • 2 Citations

Abstract

Diffusive and convective processes in the metal-halide lamp cause an unwanted axial colour segregation. Convection is induced by gravity. To understand the flow phenomena in the arc discharge lamp it has been investigated under normal laboratory conditions, micro-gravity (ISS and parabolic flights) and hyper-gravity (parabolic flights 2g, centrifuge 1g–10g). The measurement techniques are webcam imaging, and emission and laser absorption spectroscopy. This paper aims to give an overview of the effect of different artificial gravity conditions on the lamp and compares the results from the three measurement techniques.

References

  1. Bakker, L.P.: Plasma Control of the Emission Spectrum of Mercury-Noble-gas Discharges. Ph.D. thesis, Eindhoven University of Technology (2000)

  2. Beks, M.L.: Modelling Additive Transport in Metal Halide Lamps. Ph.D. thesis, Eindhoven University of Technology (2008)

  3. Beks, M.L., Hartgers, A., van der Mullen, J.J.A.M.: Demixing in a metal halide lamp, results from modelling. J. Phys. D: Appl. Phys. 39, 4407 (2006)

  4. Beks, M.L., Flikweert, A.J., Nimalasuriya, T., Stoffels, W.W., van der Mullen, J.J.A.M.: Competition between convection and diffusion in a metal halide lamp, investigated by numerical simulations and imaging laser absorption spectroscopy. J. Phys. D 41, 144025 (2008)

  5. Bellows, A.H., Feuersanger, A.E., Rogoff, G.L., Rothwell, H.L.: HID convection studies: a space shuttle experiment. In: Illuminating Engineering Soc. Meeting, St Louis, 5–9 August 1984

  6. Bellows, A.H., Feuersanger, A.E., Rogoff, G.L., Rothwell, H.L.: Convection and additive segregation in high pressure lamp arcs: Early results from a space shuttle experiment. Gaseous Electronics Conf. Bull. Am. Phys. Soc. 30, 141 (1985)

  7. Bonvallet, G.A., Lawler, J.E.: Optical absorption spectroscopy on a metal-halide high intensity discharge arc lamp using synchrotron radiation. J. Phys. D 36, 1510–1518 (2003)

  8. Buie, M.J., Pender, J.T.P., Holloway, J.P., Vincent, T., Ventzek, P.L.G., Brake, M.L.: Abel’s inversion applied to experimental spectroscopic data with off axis peaks. J. Quant. Spectrosc. Radiat. Transfer 55, 231–243 (1996)

  9. Dakin, J.T., Shyy, W.: The prediction of convection and additive demixing in vertical metal halide discharge lamps. J. Electrochem. Soc. 136, 1210–1214 (1989)

  10. Dakin, J.T., Rautenberg Jr., T.H., Goldfield, E.M.: Anatomy of a vertical metal halide discharge. J. Appl. Phys. 66, 4074–4088 (1989)

  11. European Space Agency: European Space Agency homepage. http://www.esa.int (2009)

  12. Fischer, E.: Axial segregation of additives in mercury-metal-halide arcs. J. Appl. Phys. 47, 2954–2960 (1976)

  13. Flikweert, A.J., Nimalasuriya, T., Groothuis, C.H.J.M., Kroesen, G.M.W., Stoffels, W.W.: Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy. J. Appl. Phys. 98, 073301 (2005)

  14. Flikweert, A.J., van Kemenade, M., Nimalasuriya, T., Haverlag, M., Kroesen, G.M.W., Stoffels, W.W.: Axial segregation in metal-halide lamps under varying gravity conditions during parabolic flights. J. Phys. D 39, 1599–1605 (2006)

  15. Flikweert, A.J., Nimalasuriya, T., Kroesen, G.M.W., Stoffels, W.W.: Imaging Laser Absorption Spectroscopy of the metal-halide lamp in a centrifuge (1–10g). Plasma Sources Sci. Technol. 16, 606–613 (2007)

  16. Flikweert, A.J., Beks, M.L., Nimalasuriya, T., Kroesen, G.M.W., van der Mullen, J.J.A.M., Stoffels, W.W.: 2-D images of the metal-halide lamp obtained by experiment and model. IEEE Trans. Plasma Sci. 36, 1174–1175 (2008)

  17. International Energy Agency: Light’s Labour’s Cost: Organisation for economic co-operation and development. ISBN 92-64-10951-X. http://www.iea.org (2006)

  18. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE, Piscataway (1988)

  19. Lister, G.G., Lawler, J.E., Lapatovich, W.P., Godyak, V.A.: The physics of discharge lamps. Rev. Mod. Phys. 76, 541–598 (2004)

  20. Nimalasuriya, T.: Transport Phenomena in Metal-Halide Lamps, a poly-diagnostic study. Ph.D. thesis, Eindhoven University of Technology (2007)

  21. Nimalasuriya, T., Curry, J.J., Sansonetti, C.J., Ridderhof, E.J., Flikweert, A.J., Stoffels, W.W., Haverlag, M., van der Mullen, J.J.A.M.: X-ray induced fluorescence measurement of the density distribution of Dy and Hg in a metal-halide lamp. In: XXVIIth International Conference on Phenomena in Ionized Gases (2005)

  22. Nimalasuriya, T., Flikweert, A.J., Haverlag, M., Kemps, P.C.M., Kroesen, G.M.W., Stoffels, W.W., van der Mullen, J.J.A.M.: Metal halide lamps in the international space station ISS. J. Phys. D 39, 2993–3001 (2006)

  23. Nimalasuriya, T., Pupat, N.B.M., Flikweert, A.J., Stoffels, W.W., Haverlag, M., van der Mullen, J.J.A.M.: Optical emission spectroscopy of metal-halide lamps: radially resolved atomic state distribution functions of dy and hg. J. Appl. Phys. 99, 053302 (2006)

  24. Nimalasuriya, T., Thubé, G.M., Flikweert, A.J., Haverlag, M., Kroesen, G.M.W., Stoffels, W.W., van der Mullen, J.J.A.M.: Axial segregation in metal-halide lamps under varying gravity conditions ranging from 1 to 10 g. J. Phys. D 40, 2839–2846 (2007)

  25. Pretzler, G., Jäger, H., Neger, T., Philipp, H., Woisetschläger, J.: Comparison of different methods of abel inversion using computer simulated and experimental side-on data. Z. Naturforsch. 47a, 955–970 (1992)

  26. Rogoff, G.L., Feuersanger, A.E., Bellows, A.H., Rothwell, H.L.: Convection and additive segregation in metal-halide lamp arcs: results from a space shuttle experiment. In: Symp. on Science and Technology of High Temperature Light Sources, Electrochemical Society Meeting, vol. 85–1, pp. 551–552, Toronto, May (1985)

  27. Rogoff, G.L., Feuersanger, A.E., Drummey, J.P., Rothwell Jr., H.L.: Determination of two-dimensional temperature and additive density distributions in a high-intensity-discharge lamp arc. J. Appl. Phys. 62, 4084–4089 (1987)

  28. Stoffels, W.W., Kemps, P.C.M., Beckers, J., Kroesen, G.M.W., Haverlag, M.: Light emission of metal halide lamps under mirco- and hypergravity conditions. Appl. Phys. Lett. 87, 241501 (2005)

  29. Stoffels, W.W., Baede, A.H.F.M., van der Mullen, J.J.A.M., Haverlag, M., Zissis, G.: Definition of a high intensity metal halide discharge reference lamp. Meas. Sci. Technol. 17, N67 (2006)

  30. Stoffels, W.W., Nimalasuriya, T., Flikweert, A.J., Mulders, H.C.J.: Discharges for lighting. Plasma Phys. Control. Fusion 49, B505–B512 (2007)

  31. Stormberg, H.-P.: Axial and radial segreagation in metal halide arcs. J. Appl. Phys. 52, 3233–3237 (1981)

  32. Sudharsanan, S.I.: The Abel Inversion of Noisy Data Using Discrete Integral Transforms. Ph.D. thesis, Knoxville: University of Tennessee (1986)

  33. van der Mullen, J.A.M.: Excitation equilibria in plasma’s; a classification. Phys. Rep. 191, 109–220 (1990)

  34. Zhu, X.: Active spectroscopy on HID lamps—exploration of various methods. Ph.D. thesis, Eindhoven University of Technology (2005)

  35. Zollweg, R.J.: Reducing additive segregation in metal halide high-intensity discharge lamps. J. IES 5, 12–19 (1975)

Download references

Author information

Correspondence to A. J. Flikweert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

This movie shows a compilation of the centrifuge while speeding up to 10g and slowing down again to 1g. Note that the real time to reach 10g is about 3 minutes. The gondola swings out at hyper-gravity, so the gravity vector always stays parallel to the lamp axis. (MPG 6.65 MB)

Movie 1

This movie shows the lamp (10 mg Hg, 4 mg DyI3, P = 130 W) during a parabola in the parabolic flights (0g–2g). The lamp is rotated by 90 degrees; the top of the lamp is at the left, whereas the bottom of the lamp is at the right. The axial segregation is diminished at hyper-gravity. At micro-gravity the axial segregation vanishes, although it takes some time for the lamp to stabilize because of the diffusion time constant. (MPG 2.07 MB)

Movie 2

This movie shows a compilation of the centrifuge while speeding up to 10g and slowing down again to 1g. Note that the real time to reach 10g is about 3 minutes. The gondola swings out at hyper-gravity, so the gravity vector always stays parallel to the lamp axis. (MPG 6.65 MB)

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Flikweert, A.J., Nimalasuriya, T., Kroesen, G.M.W. et al. The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy. Microgravity Sci. Technol. 21, 319 (2009) doi:10.1007/s12217-009-9106-z

Download citation

Keywords

  • Metal-halide lamp
  • Emission spectroscopy
  • Laser absorption spectroscopy
  • Artificial gravity