# Critical Hardy–Littlewood inequality for multilinear forms

• Djair Paulino
Article

## Abstract

The Hardy–Littlewood inequalities for m-linear forms on $$\ell _{p}$$ spaces are known just for $$p>m$$. The critical case $$p=m$$ was overlooked for obvious technical reasons and, up to now, the only known estimate is the trivial one. In this paper we deal with this critical case of the Hardy–Littlewood inequality. More precisely, for all positive integers $$m\ge 2$$ we have
\begin{aligned} \sup _{j_{1}}\left( \sum _{j_{2}=1}^{n}\left( \ldots \left( \sum _{j_{m}=1} ^{n}\left| T\left( e_{j_{1}},\ldots ,e_{j_{m}}\right) \right| ^{s_{m} }\right) ^{\frac{1}{s_{m}}\cdot s_{m-1}}\ldots \right) ^{\frac{1}{s_{3}}s_{2} }\right) ^{\frac{1}{s_{2}}}\le 2^{\frac{m-2}{2}}\left\| T\right\| \end{aligned}
for all m-linear forms $$T{:}\,\ell _{m}^{n}\times \cdots \times \ell _{m} ^{n}\rightarrow \mathbb {K}=\mathbb {R}$$ or $$\mathbb {C}$$ with $$s_{k} =\frac{2m(m-1)}{mk-2k+2}$$ for all $$k=2,\ldots ,m$$ and for all positive integers n. As a corollary, for the classical case of bilinear forms investigated by Hardy and Littlewood in 1934 our result is sharp in a strong sense (both exponents and constants are optimal for real and complex scalars).

## Keywords

Hardy–Littlewood inequality Multilinear forms Operator multiple summing

47A63 47H60

## Notes

### Acknowledgements

The author is very grateful to the referee(s) for his/her very important suggestions and remarks that helped to improve and clarify the final version of this paper.

## References

1. 1.
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)
2. 2.
Albuquerque, N., Araújo, G., Cavalcante, W., Nogueira, T., Núñez, D., Pellegrino, D., Rueda, P.: On summability of multilinear operators and applications. Ann. Funct. Anal. 9(4), 574–590 (2018)
3. 3.
Albuquerque, N., Bayart, F., Pellegrino, D., Seoane, J.: Sharp generalizations of the multilinear Bohnenblust–Hille inequality. J. Funct. Anal. 266(06), 3726–3740 (2014)
4. 4.
Albuquerque, N., Rezende, L.: Anisotropic regularity principle in sequence spaces and applications. Commun. Contemp. Math. 20(07), 1750087 (2018)
5. 5.
Araújo, G.: Some classical inequalities, summability of multilinear operators and strange functions. Ph.D. Thesis (2016)Google Scholar
6. 6.
Bayart, F.: Multiple summing maps: coordinatewise summability, inclusion theorems and $$p$$-Sidon sets. J. Funct. Anal. 274(04), 1129–1154 (2018)
7. 7.
Bohnenblust, H.F., Hille, E.: On the absolute convergence of Dirichlet series. Ann. Math. 32(03), 600–622 (1931)
8. 8.
Çaliskan, E., Pellegrino, D.: On the multilinear generalizations of the concept of absolutely summing operators. Rocky Mt. J. Math. 37(04), 1137–1154 (2007)
9. 9.
Cavalcante, W.V.: Some applications of the regularity principle in sequence spaces. Positivity 22(1), 191–198 (2018)
10. 10.
Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)
11. 11.
Dimant, V., Sevilla-Peris, P.: Summation of coefficients of polynomials on $$\ell _{p}$$ spaces. Publ. Mat. 60(2), 289–310 (2016)
12. 12.
Hardy, G., Littlewood, J.E.: Bilinear forms bounded in space $$[p, q]$$. Q. J. Math. 5(01), 241–254 (1934)
13. 13.
Littlewood, J.E.: On bounded bilinear forms in an infinite number of variables. Q. J. (Oxf. Ser.) 1, 164–174 (1930)
14. 14.
Matos, M.C.: Fully absolutely summing and Hilbert–Schmidt multilinear mappings. Collect. Math. 54(02), 111–136 (2003)
15. 15.
Montanaro, A.: Some applications of hypercontractive inequalities in quantum information theory. J. Math. Phys. 53(12), 122206 (2012). (15 pages)
16. 16.
Nunes, A.: A new estimate for the constants of an inequality due to Hardy and Littlewood. Linear Algebra Appl. 526, 27–34 (2017)
17. 17.
Pellegrino, D., Teixeira, E.: Towards sharp Bohnenblust–Hille constants. Commun. Contemp. Math. 20(03), 1750029 (2018)
18. 18.
Pellegrino, D., Santos, J., Serrano-Rodríguez, D., Teixeira, E.: A regularity principle in sequence spaces and applications. Bull. Sci. Math. 141(08), 802–837 (2017)
19. 19.
Praciano-Pereira, T.: On bounded multilinear forms on a class of $$\ell _{p}$$ spaces. J. Math. Anal. Appl. 81, 561–568 (1981)
20. 20.
Pérez-García, D.: Aplicaciones multilineales absolutamente sumantes. Ph.D. Thesis (2004)Google Scholar