Density of convex-cyclic vectors

  • A. R. SazegarEmail author
  • A. Assadi


In this paper we investigate density of convex-cyclic vectors for a bounded operator T and dependency of it on \(L_T\), the left multiplication operator associated to T. Also we research some properties of convex-cyclic semigroups.


Hypercyclicity Convex hull Left multiplication operator Strong operator topology 

Mathematics Subject Classification

Primary 47A16 Secondary 37A25 



We thank the referee for the accurate reading of this article.


  1. 1.
    Bermudez, T., Bonilla, A., Feldman, N.S.: On convex-cyclic operators. J. Math. Anal. Appl. 434(2), 1166–1181 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chan, K., Seceleanu, I.: Cyclicity of vectors with orbital limit points for backward shifts. Integr. Equ. Oper. Theory. 78, 225–232 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chan, K., Taylor Jr., R.D.: Hypercyclic subspaces of a Banach space. Integr. Equ. Oper. Theory 41, 381–388 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Conejero, J.A., Muller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic \(C_0-\)semigroup. J. Funct. Anal. 244, 342–348 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De la Rosa, M., Read, C.J.: A hypercyclic operator whose direct sum \(T\oplus T\) is not hypercyclic. J. Oper. Theory 61(2), 369–380 (2009)zbMATHGoogle Scholar
  6. 6.
    Dowson, H.R.: Spectral Theory of Linear Operators. Academic Press, London (1978)zbMATHGoogle Scholar
  7. 7.
    Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)zbMATHGoogle Scholar
  8. 8.
    Feldman, N.S., McGuire, P.: Convex-cyclic matrices, convex-polynomial interpolation and invariant convex sets. Oper. Matrices 11(2), 465–492 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grivaux, S.: Hypercyclic operators, mixing operators and bounded steps problem. J. Operator Theory 54(1), 147–168 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Grosse-Erdman, K.G., Peris, A.: Linear Chaos. Springer, London (2011)CrossRefGoogle Scholar
  11. 11.
    Leon-Saavedra, F., Romero de la Rosa, M. P.: Powers of convex-cyclic operators. Abstr. Appl. Anal. MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rezaei, H.: On the convex hull generated by orbit of operators. Linear Algebra Appl 438, 4190–4203 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rolewicz, S.: On orbits of elements. Studia Math. 32, 17–22 (1969)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Sazegar, A.R., Assadi, A., Rabieimotlagh, O.: Mixing property of \(C_0-\)semigroup of left multiplication operators. Boll. Unione Mat. Ital. 8, 257–263 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StaticsUniversity of BirjandBirjandIran

Personalised recommendations