Is there any nontrivial compact generalized shift operator on Hilbert spaces?
Article
First Online:
- 19 Downloads
Abstract
In the following text for cardinal number \(\tau >0\), and self-map \(\varphi :\tau \rightarrow \tau \) we show the generalized shift operator \(\sigma _\varphi (\ell ^2(\tau ))\subseteq \ell ^2(\tau )\) (where \(\sigma _\varphi ((x_\alpha )_{\alpha<\tau })=(x_{\varphi (\alpha )})_{\alpha <\tau }\) for \((x_\alpha )_{\alpha <\tau }\in {{\mathbb {C}}}^\tau \)) if and only if \(\varphi :\tau \rightarrow \tau \) is bounded and in this case Open image in new window is continuous, consequently Open image in new window
is a compact operator if and only if \(\tau \) is finite.
Keywords
Compact operator Generalized shift Hilbert spaceMathematics Subject Classification
46C99References
- 1.Ayatollah Zadeh Shirazi, F., Dikranjan, D.: Set theoretical entropy: a tool to compute topological entropy. In: Proceedings ICTA 2011, Islamabad, Pakistan, July 4–10, 2011, pp. 11–32. Cambridge Scientific Publishers (2012)Google Scholar
- 2.Ayatollah Zadeh Shirazi, F., Karami Kabir, N., Heidari Ardi, F.: A note on shift theory, Mathematica Pannonica. In: Proceedings of ITES-2007, vol. 19/2, pp. 187–195 (2008)Google Scholar
- 3.Conway, J.B.: A Course in Abstract Analysis, Graduate Studies in Mathematics, vol. 141. American Mathematical Society, Providence (2012)CrossRefGoogle Scholar
- 4.Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics, 2nd edn. A Wiley-Interscience Publication, New York (1999)zbMATHGoogle Scholar
- 5.Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos, Universitext. Springer, Berlin (2011)CrossRefGoogle Scholar
- 6.Giordano Bruno, A.: Algebraic entropy of generalized shifts on direct products. Commun. Algebra 38(11), 4155–4174 (2010)CrossRefGoogle Scholar
- 7.Holz, M., Steffens, K., Weitz, E.: Introduction to Cardinal Arithmetic, Birkhuser Advanced Texts: Basler Lehrbcher. Birkhuser Verlag, Basel (1999)CrossRefGoogle Scholar
- 8.Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley Classics Library, New York (1989)zbMATHGoogle Scholar
- 9.Ornstein, D.: Bernoulli shifts with the same entropy are isomorphic. Adv. Math. 4, 337–352 (1970)MathSciNetCrossRefGoogle Scholar
- 10.Walters, P.: An Introduction to Ergodic Theory, Graduate Texts in Mathematics, vol. 79. Springer, Berlin (1982)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Italia S.r.l., part of Springer Nature 2018