A study on complex semi-symmetric non-metric F-connections on anti-Kähler manifolds

  • Cagri Karaman
  • Aydin GezerEmail author


In this paper, we have considered an anti-Kähler manifold (MgF) admitting a complex semi-symmetric non-metric F-connection \({\widetilde{\nabla }}\). First we study the properties of the curvature tensor, the conharmonic curvature tensor and the conformal curvature tensor of the connection \({\widetilde{\nabla }}\). Also, we investigate the condition for the anti-Kähler manifold (MgF) to be Einstein space with respect to the connection \({\widetilde{\nabla }}\). Finally, we define the dual connection of the connection \({\widetilde{\nabla }}\) and present some results related to its curvature tensors.


Complex structure Curvature tensor Semi-symmetric non-metric F-connection Tachibana operator Dual connection 

Mathematics Subject Classification

53B20 53B15 53B35 



We would like to thank the reviewer for his\(\backslash \)her thoughtful comments and efforts towards improving our manuscript.


  1. 1.
    Agashe, N.S., Chafle, M.R.: A semi-symmetric non-metric connection on a Riemannian manifold. Indian J. Pure. Appl. Math. 23(6), 399–409 (1992)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Amur, K., Pujar, S.S.: On submanifolds of a Riemannian manifold admitting a metric semi-symmetric connection. Tensor N. S. 32, 35–38 (1978)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chaki, M.C., Konar, A.: On a type of semi-symmetric connection on a Riemannian manifold. J. pure Math. 1, 77–80 (1981)MathSciNetzbMATHGoogle Scholar
  4. 4.
    De, U.C.: On a type of semi-symmetric connection on a Riemannian manifold. Indian J. Pure Appl. Math. 21, 334–338 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ganchev, G., Borisov, A.: Note on the almost complex manifolds with a Norden metric. C. R. Acad. Bulg. Sci. 39(5), 31–34 (1986)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ganchev, G., Gribachev, K., Mihova, V.: \(B\)-connections and their conformal invariants on conformally Kahler manifolds with \(B\)-metric. Publ. Inst. Math. (Beograd) (N.S.) 42, 107–121 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Gribachev, K.I., Mekerov, D.G., Djelepov, G.D.: Generalized B-manifolds. C. R. Acad. Bulg. Sci. 38(3), 299–302 (1985)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hayden, H.A.: Sub-spaces of a space with torsion. Proc. London Math. Soc. S2–34, 27–50 (1932)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Iscan, M., Salimov, A.A.: On Kahler–Norden manifolds. Proc. Indian Acad. Sci. (Math. Sci.) 119(1), 71–80 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lauritzen, S.: Statistical manifolds. In: Differential Geometry in Statistical Inference, Institute of Mathematical Statistics Lecture Notes–Monograph Series, vol. 10, pp. 163–216. (Inst. Math. Statist., Hayward, CA, 1987) (1987)Google Scholar
  11. 11.
    Prvanovic, M.: On pseudo metric semi-symmetric connections. Pub. Inst. Math. Nouv. ser. 18, 157–164 (1975)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Salimov, A.: Tensor Operators and their Applications. Mathematics research developments series, p. xii+186. Nova Science Publishers, Inc., New York (2013)zbMATHGoogle Scholar
  13. 13.
    Tachibana, S.: Analytic tensor and its generalization. Tohoku Math. J. 12, 208–221 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Yano, K.: On semi-symmetric metric connection. Rev. Roum. Math. Pures Appl. 15, 1579–1586 (1970)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Yano, K., Ako, M.: On certain operators associated with tensor fields. Kodai Math. Sem. Rep. 20, 414–436 (1968)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Oltu Faculty of Earth Science, Geomatics EngineerAtaturk UniversityErzurumTurkey
  2. 2.Faculty of Science, Department of MathematicsAtaturk UniversityErzurumTurkey

Personalised recommendations