Some results on skew Hurwitz series rings
- 16 Downloads
Abstract
A ring is quasi-Baer (respectively, Baer) in case the right annihilator of every ideal (respectively, subset) is generated by an idempotent, as a right ideal. In this article, we investigate on the relationship between the quasi-Baerness, Baerness, semiprimitivity, simplicity and NI properties of a ring R, and its skew Hurwitz series ring \((HR, \alpha )\), where R is a ring equipped with an endomorphism \(\alpha \).
Keywords
Skew Hurwitz series ring (Quasi) Baer ring Semiprimitive ring Simple ring NI-ringMathematics Subject Classification
16S34 16S35 16S36 16W60 16D40Notes
Acknowledgements
The authors would like to express their deep gratitude to the referee for a very careful reading of the article, and many valuable comments, which have greatly improved the presentation of the article. The first author thanks department of Mathematics at university of Alberta, and, specifically, professor Anthony T-M Lau for constructive comments and kind support during my sabbatical that led to significant improvements in this study.
References
- 1.Armendariz, E.P.: A note on extensions of Baer and p.p.-rings. J. Aust. Math. Soc. 18, 470–473 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bell, H.E.: Near-rings in which each element is a power of itself. Bull. Aust. Math. Soc. 2, 363–368 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Berberian, S.K.: Baer \(*\)-Rings. Springer, Berlin (1972)CrossRefzbMATHGoogle Scholar
- 4.Birkenmeier, G.F., Kim, J.Y., Park, J.K.: On quasi-Baer rings. Contemp. Math. 259, 67–92 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Birkenmeier, G.F., Park, J.K.: Triangular matrix representations of ring extensions. J. Algebra 265(2), 457–477 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Chatters, A.W., Hajarnavis, C.R.: Rings with Chain Conditions. Pitman Advanced Publishing Program, Boston (1980)zbMATHGoogle Scholar
- 7.Clark, W.E.: Twisted matrix units semigroup algebras. Duke Math. J. 34, 417–424 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Fliess, M.: Sur divers produits de series fonnelles. Bull. Soc. Math. Fr. 102, 181–191 (1974)CrossRefzbMATHGoogle Scholar
- 9.Habibi, M., Moussavi, A., Manaviyat, R.: On skew quasi-Baer rings. Commun. Algebra 38(10), 3637–3648 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Habibi, M., Moussavi, A.: On nil skew Armendariz rings. Asian Eur. J. Math. 5(2), 1250017 (2012). 16 ppMathSciNetCrossRefzbMATHGoogle Scholar
- 11.Hashemi, E., Moussavi, A.: Polynomial extensions of quasi-Baer rings. Acta Math. Hungar. 107(3), 207–224 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Hassanein, A.M.: Clean rings of skew Hurwitz series. Le Matematiche 62(1), 47–54 (2007)MathSciNetzbMATHGoogle Scholar
- 13.Hirano, Y.: On ordered monoid rings over a quasi-Baer ring. Commun. Algebra 29, 2089–2095 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Hwang, S.U., Jeon, Y.C., Lee, Y.: Structure and topological conditions of NI rings. J. Algebra 302, 186–199 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Kaplansky, I.: Projections in Banach algebras. Ann. Math. 53, 235–249 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Kaplansky, I.: Rings of operators. Benjamin, New York (1965)zbMATHGoogle Scholar
- 17.Keigher, W.F.: Adjunctions and comonads in differential algebra. Pacific J. Math. 248, 99–112 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Keigher, W.F.: On the ring of Hurwitz series. Commun. Algebra 25(6), 1845–1859 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Keigher, W.F., Pritchard, F.L.: Hurwitz series as formal functions. J. Pure Appl. Algebra 146, 291–304 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Krempa, J.: Some examples of reduced rings. Algebra Colloq. 3(4), 289–300 (1996)MathSciNetzbMATHGoogle Scholar
- 21.Lam, T.Y.: A First Course in Noncommutative Rings. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
- 22.Lanski, C.: Nil subrings of Goldie rings are nilpotent. Can. J. Math. 21, 904–907 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Lenagan, T.H.: Nil ideals in rings with finite Krull dimension. J. Algebra 29, 77–87 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Liu, Z.: Hermite and PS-rings of Hurwitz series. Commun. Algebra 28(1), 299–305 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Marks, G.: On 2-primal Öre extensions. Commun. Algebra 29, 2113–2123 (2001)CrossRefzbMATHGoogle Scholar
- 26.Paykan, K.: Nilpotent elements of skew Hurwitz series rings. Rendiconti del Circolo Matematico di Palermo Series 2 65(3), 451–458 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 27.Paykan, K., Moussavi, A.: Baer and quasi-Baer skew generalized power series rings. Commun. Algebra 44(4), 1615–1635 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Paykan, K.: Principally quasi-Baer skew Hurwitz series rings. Boll. Unione Mat. Ital. 10(4), 607–616 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Paykan, K.: A study on skew Hurwitz series rings. Ricerche Mat. 66(2), 383–393 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Paykan, K., Moussavi, A.: Semiprimeness, quasi-Baerness and prime radical of skew generalized power series rings. Commun. Algebra 45(6), 2306–2324 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Pollingher, A., Zaks, A.: On Baer and quasi-Baer rings. Duke Math. J. 37, 127–138 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
- 32.Rickart, C.E.: Banach algebras with an adjoint operation. Ann. Math. 47, 528–550 (1946)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Sherman, S.: The second adjoint of a \(C^{*}\)-algebra. Proc. Int. Congr. Math. Camb. 1, 470 (1950)Google Scholar
- 34.Takeda, Z.: Conjugate spaces of operator algebras. Proc. Jpn. Acad. 30, 90–95 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
- 35.Taft, E.T.: Hurwitz invertibility of linearly recursive sequences. Congr. Numer. 73, 37–40 (1990)MathSciNetzbMATHGoogle Scholar