A strong maximum principle for globally hypoelliptic operators

  • Kazuaki TairaEmail author


In this paper we study the strong maximum principle for globally hypoelliptic differential operators of second-order, and reveal the underlying analytical mechanism of propagation of maximums in terms of the Lie algebra generated by diffusion vector fields and the Fichera function. Our formulation of the strong maximum principle is coordinate-free. The results here may be applied to questions of uniqueness for degenerate elliptic boundary value problems on a manifold. Furthermore, the mechanism of propagation of maximums plays an important role in the interpretation and study of Markov processes from the viewpoint of functional analysis.


Globally hypoelliptic operator Strong maximum principle Lie algebra Fichera function 

Mathematics Subject Classification

35J70 35H10 58G20 35K65 



The author is grateful to the referee for many valuable suggestions and comments, which have improved substantially the presentation of the present paper. He is also indebted to Professors Hajime Sato and Koichi Uchiyama for formulating the mapping \(\varPsi \) in terms of differential geometry.


  1. 1.
    Amano, K.: Maximum principles for degenerate elliptic–parabolic operators. Indiana Univ. Math. J. 29, 545–557 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bony, J.-M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19, 277–304 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bony, J.-M., Courrège, P., Priouret, P.: Semigroupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum. Ann. Inst. Fourier (Grenoble) 18, 369–521 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chazarain, J., Piriou, A.: Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier-Villars, Paris (1981)zbMATHGoogle Scholar
  5. 5.
    Chow, W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1940)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fefferman, C., Phong, D.H.: Subelliptic eigenvalue problems. Conference on Harmonic Analysis (1981: Chicago, Ill), pp. 590–606. Wadsworth, Belmont, CA (1983)Google Scholar
  7. 7.
    Fichera, G.: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. 8(5), 1–30 (1956)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Friedman, A.: Remarks on the maximum principle for parabolic equations and its applications. Pac. J. Math. 8, 201–211 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fujiwara, D., Omori, H.: An example of a globally hypo-elliptic operator. Hokkaido Math. J. 12, 293–297 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Reprint of the Classics in Mathematics, 1998th edn. Springer, Berlin (2001)zbMATHGoogle Scholar
  11. 11.
    Hill, C.D.: A sharp maximum principle for degenerate elliptic–parabolic equations. Indiana Univ. Math. J. 20, 213–229 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hopf, E.: Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter ordnung vom elliptischen Typus, Sitz. Ber. Preuss. Akad. Wissensch. Berl. Math. Phys. Kl 19, 147–152 (1927)zbMATHGoogle Scholar
  13. 13.
    Hörmander, L.: Pseudodifferential operators and non-elliptic boundary problems. Ann. Math. 2(83), 129–209 (1966)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hörmander, L.: A class of hypoeiliptic pseudodifferential operators with double characteristics. Math. Ann. 217, 165–188 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators III, Pseudo-differential Operators, Reprint of the 1994 Edition, Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2007)Google Scholar
  17. 17.
    Nicolaescu, L.I.: Lectures on the Geometry of Manifolds, 2nd edn. World Scientific Publishing, Hackensack, NJ (2007)CrossRefzbMATHGoogle Scholar
  18. 18.
    Nirenberg, L.: A strong maximum principle for parabolic equations. Commun. Pure Appl. Math. 6, 167–177 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oleĭnik, O.A.: On properties of solutions of certain boundary problems for equations of elliptic type. Mat. Sb. 30, 595–702 (1952). (in Russian)MathSciNetGoogle Scholar
  20. 20.
    Oleĭnik, O.A., Radkevič, E.V.: Second Order Equations with Nonnegative Characteristic Form. Itogi Nauki, Moscow (1971). ((in Russian); English translation: Amer. Providence, Rhode Island and Plenum Press, New York, Math. Soc. (1973)) Google Scholar
  21. 21.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations, Corrected Second Printing. Springer, New York (1984)CrossRefGoogle Scholar
  22. 22.
    Radkevič, E.V.: A priori estimates and hypoelliptic operators with multiple characteristics. Dokl. Akad. Nauk SSSR 187, 274–277 (1969). ((in Russian); English translation in Soviet Math. Dokl. 10, 849–853 (1969)) MathSciNetGoogle Scholar
  23. 23.
    Redheffer, R.M.: The sharp maximum principle for nonlinear inequalities. Indiana Univ. Math. J. 21, 227–248 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Stroock, D.W., Varadhan, S.R.S.: On the support of diffusion processes with applications to the strong maximum principle. In: Proceedings of the Sixth Berkeley Symposium of Probability and Mathematical Statistics, vol. 3, pp. 333–359 (1972)Google Scholar
  25. 25.
    Stroock, D.W., Varadhan, S.R.S.: On degenerate elliptic–parabolic operators of second order and their associated diffusions. Commun. Pure Appl. Math. 25, 651–713 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Taira, K.: A strong maximum principle for degenerate elliptic operators. Commun. Partial Differ. Equ. 4, 1201–1212 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Taira, K.: Semigroups and boundary value problems. Duke Math. J. 49, 287–320 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Taira, K.: Le principe du maximum et l’hypoellipticité globale. Séminaire Bony–Sjöstrand–Meyer 1984–1985, Exposé No. I, Ecole Polytechnique, Palaiseau (1985)Google Scholar
  29. 29.
    Taira, K.: Diffusion Processes and Partial Differential Equations. Academic Press Inc., Boston, MA (1988)zbMATHGoogle Scholar
  30. 30.
    Taira, K.: Semigroups, Boundary Value Problems and Markov Processes. Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2014)zbMATHGoogle Scholar
  31. 31.
    Yoshino, M.: A class of globally hypoelliptic operators on the torus. Math. Z. 201, 1–11 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of TsukubaTsukubaJapan

Personalised recommendations