Superposition operators between logarithmic Bloch spaces
Article
First Online:
Received:
Accepted:
- 6 Downloads
Abstract
We characterize all entire functions \(\phi \) that maps a logarithmic Bloch-type space \({\mathcal {B}}^\alpha _{\log ^\beta }\) into another of the same kind by superposition. As consequences of our study, we obtain several results about the boundedness of superposition operators acting between \(\alpha \)-Bloch spaces, Bloch–Orlicz spaces among others.
Keywords
Bloch-type spaces Superposition operator Entire functionMathematics Subject Classification
30D45 47B33Notes
Acknowledgements
The authors wish to express their sincere gratitude to the anonymous referee for a thorough review and insightful suggestions.
References
- 1.Álvarez, V., Márquez, M.A., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 2.Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990)CrossRefMATHGoogle Scholar
- 3.Attele, K.: Toeplitz and Hankel operators on Bergman spaces. Hokkaido Math. J. 21, 279–293 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 4.Bierstedt, K.D., Meise, R., Summers, W.H.: A projective description of weighted inductive limits. Trans. Am. Math. Soc. 272, 107–160 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 5.Bonet, J., Domański, P., Lindström, M.: Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic function. Can. Math. Bull. 42(2), 139–148 (1999)MathSciNetCrossRefMATHGoogle Scholar
- 6.Bonet, J., Vukotić, D.: Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Mon. Math. 170, 311–323 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 7.Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. J. Aust. Math. Soc. 96(2), 186–197 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 8.Brown, L., Shields, A.L.: Multipliers and cyclic vectors in the Bloch space. Mich. Math. J. 38, 141–146 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 9.Buckley, S.M., Fernández, J.L., Vukotić, D.: Superposition operators on Dirichlet type spaces. Rep. Univ. Jyväskylä 83, 41–61 (2001)MathSciNetMATHGoogle Scholar
- 10.Buckley, S.M., Vukotić, D.: Univalent interpolation in Besov space and superposition into Bergman spaces. Potential Anal. 29, 1–16 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 11.Cámera, G., Giménez, J.: Nonlinear superposition operators acting on Bergman spaces. Compos. Math. 93, 23–35 (1994)MathSciNetMATHGoogle Scholar
- 12.Castillo, R.E., Ramos-Fernández, J.C., Salazar, M.: Bounded superposition operators between Bloch–Orlicz and \(\alpha \)-Bloch spaces. Appl. Math. Comput. 218, 3441–3450 (2011)MathSciNetMATHGoogle Scholar
- 13.Girela, D., Márquez, M.A.: Superposition operators between \(Q_p\) spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 14.Hyvärinen, O., Kemppainen, M., Lindström, M., Rautio, A., Saukko, E.: The essential norm of weighted composition operators on weighted Banach spaces of analytic functions. Integral Equ. Oper. Theory 72(2), 151–157 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 15.Levin, B.Ya.: Lectures on Entire Functions, Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)Google Scholar
- 16.Malavé-Ramírez, M.T., Ramos-Fernández, J.C.: The associated weight and the essential norm of weighted composition operators. Banach J. Math. Anal. 9(1), 144–158 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 17.Ramos-Fernández, J.C.: Composition operators on Bloch–Orlicz type spaces. Appl. Math. Comput. 217, 3392–3402 (2010)MathSciNetMATHGoogle Scholar
- 18.Ramos-Fernández, J.C.: Bounded superposition operators between weighted Banach spaces of analytic functions. Appl. Math. Comput. 219, 4942–4949 (2013)MathSciNetMATHGoogle Scholar
- 19.Ramos-Fernández, J.C.: Logarithmic Bloch spaces and their weighted composition operators. Rend. Circ. Mat. Palermo 65, 159–174 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 20.Stević, S.: On new Bloch-type spaces. Appl. Math. Comput. 215, 841–849 (2009)MathSciNetMATHGoogle Scholar
- 21.Xiong, C.: Superposition operators between \(Q_p\) spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005)MathSciNetMATHGoogle Scholar
- 22.Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 23.Ye, S.: Weighted composition operator on the logarithmic Bloch space. Bull. Korean Math. Soc. 47, 527–540 (2010)MathSciNetCrossRefMATHGoogle Scholar
- 24.Yoneda, R.: The composition operators on weighted Bloch space. Arch. Math. (Basel) 78, 310–317 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 25.Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143–1177 (1993)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer-Verlag Italia S.r.l., part of Springer Nature 2018