Two modified proximal point algorithms in geodesic spaces with curvature bounded above
Article
First Online:
Received:
Accepted:
- 14 Downloads
Abstract
We obtain existence and convergence theorems for two variants of the proximal point algorithm involving proper lower semicontinuous convex functions in complete geodesic spaces with curvature bounded above.
Keywords
\(\text {CAT}(1)\) space Convex function Fixed point Geodesic space Minimizer Proximal point algorithm ResolventMathematics Subject Classification
Primary 52A41 90C25 Secondary 47H10 47J05Notes
Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments on the original version of this paper. This work was supported by JSPS KAKENHI Grant Numbers 15K05007 and 17K05372.
References
- 1.Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 2.Aoyama, K., Kohsaka, F., Takahashi, W.: Proximal point methods for monotone operators in Banach spaces. Taiwan. J. Math. 15, 259–281 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 3.Ariza-Ruiz, D., Leuştean, L., Lóopez-Acedo, G.: Firmly nonexpansive mappings in classes of geodesic spaces. Trans. Am. Math. Soc. 366, 4299–4322 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 4.Bačák, M.: The proximal point algorithm in metric spaces. Isr. J. Math. 194, 689–701 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 5.Bačák, M.: Convex Analysis and Optimization in Hadamard Spaces. De Gruyter, Berlin (2014)MATHGoogle Scholar
- 6.Bačák, M., Reich, S.: The asymptotic behavior of a class of nonlinear semigroups in Hadamard spaces. J. Fixed Point Theory Appl. 16, 189–202 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 7.Bargetz, C., Dymond, M., Reich, S.: Porosity results for sets of strict contractions on geodesic metric spaces. Topol. Methods Nonlinear Anal. 50, 89–124 (2017)MathSciNetMATHGoogle Scholar
- 8.Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefMATHGoogle Scholar
- 9.Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)MathSciNetCrossRefMATHGoogle Scholar
- 10.Brézis, H., Lions, P.-L.: Produits infinis de résolvantes. Isr. J. Math. 29, 329–345 (1978)CrossRefMATHGoogle Scholar
- 11.Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
- 12.Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)MathSciNetMATHGoogle Scholar
- 13.Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry. American Mathematical Society, Providence, RI (2001)CrossRefMATHGoogle Scholar
- 14.Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)MathSciNetCrossRefMATHGoogle Scholar
- 15.Espínola, R., Fernández-León, A.: \({\text{ CAT }}(k)\)-spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353, 410–427 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 16.Espínola, R., Nicolae, A.: Proximal minimization in \({\text{ CAT }}(\kappa )\) spaces. J. Nonlinear Convex Anal. 17, 2329–2338 (2016)MathSciNetMATHGoogle Scholar
- 17.Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker Inc, New York (1984)MATHGoogle Scholar
- 18.Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 19.Jost, J.: Convex functionals and generalized harmonic maps into spaces of nonpositive curvature. Comment. Math. Helv. 70, 659–673 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 20.Kamimura, S., Takahashi, W.: Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 106, 226–240 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 21.Kendall, W.S.: Convexity and the hemisphere. J. Lond. Math. Soc. (2) 43, 567–576 (1991)MathSciNetCrossRefMATHGoogle Scholar
- 22.Kimura, Y., Kohsaka, F.: Spherical nonspreadingness of resolvents of convex functions in geodesic spaces. J. Fixed Point Theory Appl. 18, 93–115 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 23.Kimura, Y., Kohsaka, F.: Two modified proximal point algorithms for convex functions in Hadamard spaces. Linear Nonlinear Anal. 2, 69–86 (2016)MathSciNetMATHGoogle Scholar
- 24.Kimura, Y., Kohsaka, F.: The proximal point algorithm in geodesic spaces with curvature bounded above. Linear Nonlinear Anal. 3, 133–148 (2017)MathSciNetMATHGoogle Scholar
- 25.Kimura, Y., Saejung, S.: Strong convergence for a common fixed point of two different generalizations of cutter operators. Linear Nonlinear Anal. 1, 53–65 (2015)MathSciNetMATHGoogle Scholar
- 26.Kimura, Y., Satô, K.: Convergence of subsets of a complete geodesic space with curvature bounded above. Nonlinear Anal. 75, 5079–5085 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 27.Kimura, Y., Satô, K.: Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one. Fixed Point Theory Appl. 2013(7), 1–14 (2013)MathSciNetMATHGoogle Scholar
- 28.Kimura, Y., Saejung, S., Yotkaew, P.: The Mann algorithm in a complete geodesic space with curvature bounded above. Fixed Point Theory Appl. 2013(336), 1–13 (2013)MathSciNetMATHGoogle Scholar
- 29.Kirk, W.A., Panyanak, B.: A concept of convergence in geodesic spaces. Nonlinear Anal. 68, 3689–3696 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 30.Lim, T.C.: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179–182 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 31.Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche Opérationnelle 4, 154–158 (1970)MathSciNetMATHGoogle Scholar
- 32.Mayer, U.F.: Gradient flows on nonpositively curved metric spaces and harmonic maps. Commun. Anal. Geom. 6, 199–253 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 33.Nevanlinna, O., Reich, S.: Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces. Isr. J. Math. 32, 44–58 (1979)MathSciNetCrossRefMATHGoogle Scholar
- 34.Ohta, S., Pálfia, M.: Discrete-time gradient flows and law of large numbers in Alexandrov spaces. Calc. Var. Partial Differ. Equ. 54, 1591–1610 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 35.Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537–558 (1990)MathSciNetCrossRefMATHGoogle Scholar
- 36.Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 37.Saejung, S., Yotkaew, P.: Approximation of zeros of inverse strongly monotone operators in Banach spaces. Nonlinear Anal. 75, 742–750 (2012)MathSciNetCrossRefMATHGoogle Scholar
- 38.Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87, 189–202 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 39.Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)MATHGoogle Scholar
- 40.Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2) 66, 240–256 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 41.Yokota, T.: Convex functions and barycenter on \({\text{ CAT }}(1)\)-spaces of small radii. J. Math. Soc. Jpn. 68, 1297–1323 (2016)MathSciNetCrossRefMATHGoogle Scholar
Copyright information
© Springer-Verlag Italia S.r.l., part of Springer Nature 2018