Journal of Micro-Bio Robotics

, Volume 9, Issue 3–4, pp 79–86 | Cite as

Biocompatible, accurate, and fully autonomous: a sperm-driven micro-bio-robot

  • Islam S. M. KhalilEmail author
  • Veronika Magdanz
  • Samuel Sanchez
  • Oliver G. Schmidt
  • Sarthak Misra
Research Paper


We study the magnetic-based motion control of a sperm-flagella driven Micro-Bio-Robot (MBR), and demonstrate precise point-to-point closed-loop motion control under the influence of the controlled magnetic field lines. This MBR consists of a bovine spermatozoon that is captured inside Ti/Fe nanomembranes. The nanomembranes are rolled-up into a 50 μm long microtube with a diameter of 5-8 μm. Our MBR is self-propelled by the sperm cell and guided using the magnetic torque exerted on the magnetic dipole of its rolled-up microtube. The self-propulsion force provided by the sperm cell allows the MBR to move at an average velocity of 25 ±10 μm/s towards a reference position, whereas the magnetic dipole moment and the controlled weak magnetic fields (approximately 1.39 mT) allow for the localization of the MBR within the vicinity of reference positions with an average region-of-convergence of 90 ±40μm. In addition, we experimentally demonstrate the guided motion of the MBR towards a magnetic microparticle with applications towards targeted drug delivery and microactuation.


Micro-bio-robot Magnetic guidance Sperm cells Closed-loop Motion control Self-propulsion 



The authors acknowledge the funding from MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente. The research leading to these results has also received funding from the Volkswagen Foundation (# 86 362) and the European Research Council under the European Unions Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. 311529.

Supplementary material

(WMV 7.54 MB)


  1. 1.
    Purcell EM (1977) Am J Phys 45(1):3–11CrossRefMathSciNetGoogle Scholar
  2. 2.
    Mallouk TE, Sen A (2009) Sci Am 300:72–77CrossRefGoogle Scholar
  3. 3.
    Loget G, Kuhn A (2011) Nat Commun 2(535):1–6Google Scholar
  4. 4.
    Ghosh A, Fischer P (2009) Nano Lett 9(6):2243–2245CrossRefGoogle Scholar
  5. 5.
    Peyer KE, Zhang L, Nelson BJ (2013) Nanoscale 5(4):1259– 1272CrossRefGoogle Scholar
  6. 6.
    Dreyfus R, Baudry J, Roper ML, Fermigier M, Stone HA, Bibette J (2005) Nature 436(6):862–865CrossRefGoogle Scholar
  7. 7.
    Zhang L, Petit T, Peyer KE, Nelson BJ (2012) Nanomed: Nanotechnol. Biol Med 8(7):1074–1080Google Scholar
  8. 8.
    Bell D J, Leutenegger S, Hammar KM, Dong LX, Nelson BJ (2007) In: Proceedings of the IEEE international conference in robotics and automation (ICRA). pp 1128–1133Google Scholar
  9. 9.
    Tottori S, Zhang L, Qiu F, Krawczyk K, Franco-Obregn A, Nelson B J (2012) Adv Mater 24(6):811–816CrossRefGoogle Scholar
  10. 10.
    Wang J, Gao W (2012) ACS Nano 6(7):5745–5751CrossRefGoogle Scholar
  11. 11.
    Magdanz V, Sanchez S, Schmidt OG (2013) Adv Mater 25(45):6581–6588CrossRefGoogle Scholar
  12. 12.
    Martel S, Felfoul O, Mathieu J-B, Chanu A, Tamaz S, Mohammadi M, Mankiewicz M, Tabatabaei N (2009) Int J Robot Res 28(9):1169–1182CrossRefGoogle Scholar
  13. 13.
    Khalil ISM, Pichel MP, Abelmann L, Misra S (2013) Int J Robot Res 32(6):637–649CrossRefGoogle Scholar
  14. 14.
    Pan Y, Du X, Zhao F, Xu B (2012) Chem Soc Rev 41:2912–2942CrossRefGoogle Scholar
  15. 15.
    Khlebtsov N, Dykman L (2011) Chem Soc Rev 40(3):1647–1671CrossRefGoogle Scholar
  16. 16.
    Mei YF, Huang G, Solovev AA, Urena EB, Munch I, Ding F, Reindl T, Fu RKY, Chu PK, Schmidt OG (2008) Adv Mater 20(21):4085–4090CrossRefGoogle Scholar
  17. 17.
    Bermudez Urena E, Mei YF, Coric E, Makarov D, Albrecht M, Schmidt OG (2009) Phys D: Appl Phys 42 (5)Google Scholar
  18. 18.
    Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Ann Rev Biomed Eng 12:55–85CrossRefGoogle Scholar
  19. 19.
    Kummer MP, Abbott JJ, Kartochvil BE, Borer R, Sengul A, Nelson BJ (2010) IEEE Trans Robot 26(6):1006–1017CrossRefGoogle Scholar
  20. 20.
    Xi W, Solovev AA, Ananth A, Gracias D, Sanchez S, Schmidt OG (2013) Nanoscale 5:1294–1297CrossRefGoogle Scholar
  21. 21.
    Kagan D, Benchimal MJ, Claussen JC, Chuluun-Erdene E, Esener S, Wang J (2012) Angew Chem Int Ed 51:7519–7522CrossRefGoogle Scholar
  22. 22.
    Solovev AA, Xi W, Gracias D, Harazim SM, Deneke C, Sanchez S, Schmidt OG (2012) ACS Nano 6:1751CrossRefGoogle Scholar
  23. 23.
    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) IEEE Trans Robot 30. doi: 10.1109/TRO.2013.2281557
  24. 24.
    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) Appl Phys Lett 103:172404CrossRefGoogle Scholar
  25. 25.
    Keuning JD, de Vries J, Abelmann L, Misra S (2011) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 421–426Google Scholar
  26. 26.
    Khalil ISM, Magdanz V, Sanchez S, Schmidt OG, Misra S (2013) In: Proceedings of the IEEE international conference of robotics and systems (IROS). pp 2035–2040Google Scholar
  27. 27.
    Cummins JM, Woodall P F (1985) J Reprod Fert 75:153– 175CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Islam S. M. Khalil
    • 1
    Email author
  • Veronika Magdanz
    • 2
  • Samuel Sanchez
    • 4
  • Oliver G. Schmidt
    • 2
    • 3
  • Sarthak Misra
    • 5
  1. 1.German University in CairoNew Cairo CityEgypt
  2. 2.Institute for Integrative Nanosciences, IFW DresdenDresdenGermany
  3. 3.Material Systems for NanoelectronicsUniversity of Technology ChemnitzChemnitzGermany
  4. 4.Max Planck Institute for Intelligent SystemsStuttgartGermany
  5. 5.MIRA–Institute for Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeNetherlands

Personalised recommendations