Modular micro-robotic assembly through magnetic actuation and thermal bonding


We present and compare new heat-activated bonding methods for use in modular micro-robotic systems. Such modular systems prove to provide on-demand creation of arbitrary micro-scale physical shapes in remote inaccessible spaces. The bonding methods presented here quickly form strong bonds through the use of thermoplastic or solder binding sites integrated into each module face, addressing problems of assembly strength and electrical conductivity. The strength of the bonds for each method are presented for different module styles, bonding conditions and breaking conditions in a destructive test, and are compared with previous magnetic bonding methods. For 80 micrometer modules, bond strengths of up to 500 mN are observed with thermoplastic bonds, which indicates that the assemblies could be potentially used in high-force structural applications of programmable matter, microfluidic channels or healthcare. Using previously-developed micro-robot addressing methods, magnetically-functionalized modules are moved remotely for assembly using a magnetic coil system. In this way, a set of up to nine modules are remotely assembled one-by-one into an arbitrary shape capable of locomotion to demonstrate the scalability and strength of the system.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Diller E, Floyd S, Pawashe C, Sitti M (2012) Control of multiple heterogeneous magnetic microrobots in two dimensions on nonspecialized surfaces. IEEE Trans Robot 28(1):172–182

  2. 2.

    Diller E, Giltinan J, Sitti M (2013) Independent control of multiple magnetic microrobots in three dimensions. Int J Robot Res 32(5):614–631

  3. 3.

    Diller E, Miyashita S, Sitti M (2012) Magnetic hysteresis for multi-state addressable magnetic microrobotic control. In: International conference on intelligent robots and systems, pp 2325–2331

  4. 4.

    Diller E, Miyashita S, Sitti M (2012) Remotely addressable magnetic composite micropumps. RSC Advances 2(9):3850–3856

  5. 5.

    Diller E, Pawashe C, Floyd S, Sitti M (2011) Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems. Int J Robot Res 30(14):1667–1680

  6. 6.

    Diller E, Zhang N, Sitti M (2013) Bonding methods for modular micro-robotic assemblies. In: International conference on robotics and automation, pp 2573–2578

  7. 7.

    Donald BR, Levey CG, Paprotny I, Rus D (2013) Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots. Int J Robot Res 32(2):218–246

  8. 8.

    Gilpin K, Knaian A, Rus D (2010) Robot pebbles: one centimeter modules for programmable matter through self-disassembly. In: International conference on robotics and automation, pp 2485–2492

  9. 9.

    Hergt R, Dutz S (2007) Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311(1):187–192

  10. 10.

    Kummer M, Abbott J, Kratochvil B, Borer R, Sengul A, Nelson B (2010) Octomag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26(6):1006–1017

  11. 11.

    Mastrangeli M, Abbasi S, Varel C, Van Hoof C, Celis JP, Böhringer KF (2009) Self-assembly from milli- to nanoscales: methods and applications. J Micromech Microeng 19(8):083,001

  12. 12.

    Meeker D, Maslen E, Ritter R, Creighton F (1996) Optimal realization of arbitrary forces in a magnetic stereotaxis system. IEEE Trans Magn 32(2):320–328

  13. 13.

    Miyashita S, Diller E, Sitti M (2013) Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions. Int J Robot Res 32(5):591–613

  14. 14.

    Nelson BJ, Kaliakatsos IK, Abbott JJ (2010) Microrobots for minimally invasive medicine. Annu Rev Biomed Eng 12:55–85

  15. 15.

    Pawashe C, Floyd S, Sitti M (2009) Modeling and experimental characterization of an untethered magnetic micro-robot. Int J Robot Res 28(8):1077–1094

  16. 16.

    Rus D, Vona M (2001) Crystalline robots: self-reconfiguration with compressible unit modules. Auton Robot 10(1):107–124

  17. 17.

    Tabatabaei SN, Lapointe J, Martel S (2011) Shrinkable hydrogel-based magnetic microrobots for interventions in the vascular network. Adv Robot 25(8):1049–1067

  18. 18.

    Takeuchi M, Nakajima M, Kojima M, Fukuda T (2013) Handling of micro objects using phase transition of thermoresponsive polymer. J Micro-Bio Robot 8(2):53–64

  19. 19.

    Tolley MT, Krishnan M, Erickson D, Lipson H (2008) Dynamically programmable fluidic assembly. Appl Phys Lett 93(25):254,105

  20. 20.

    Tolley MT, Lipson H (2011) On-line assembly planning for stochastically reconfigurable systems. Int J Robot Res 30:1566–1584

  21. 21.

    White PJ, Yim M (2007) Scalable modular self-reconfigurable robots using external actuation. In: International conference on intelligent robots and systems, pp 2773–2778

  22. 22.

    White PJ, Yim M (2009) Reliable external actuation for full reachability in robotic modular self-reconfiguration. Int J Robot Res 29(5):598–612

  23. 23.

    Ye Z, Diller E, Sitti M (2012) Micro-manipulation using rotational fluid flows induced by remote magnetic micro-manipulators. J Appl Phys 112(6):064,912

  24. 24.

    Yim M, Shen WM, Salemi B, Rus D, Moll M, Lipson H, Klavins E, Chirikjian GS (2007) Modular self-reconfigurable robot systems. IEEE Robot Autom Mag 14(1):43–52

  25. 25.

    Yoshida E, Murata S, Kokaji S, Tomita K, Kurokawa H (2001) Micro self-reconfigurable modular robot using shape memory alloy. J Robot Mechatron 13:212–219

  26. 26.

    Zykov V, Mytilinaios E, Adams B, Lipson H (2005) Robotics: self-reproducing machines. Nature 435(7039):163–164

Download references


The authors thank Shuhei Miyashita and all members of the NanoRobotics Lab for their assistance and input on this research. They also thank Andrew Gamble for assistance using the magnetometry equipment.

Author information

Correspondence to Eric Diller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MB 13.8 MB)

(MB 13.8 MB)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Diller, E., Zhang, N. & Sitti, M. Modular micro-robotic assembly through magnetic actuation and thermal bonding. J Micro-Bio Robot 8, 121–131 (2013) doi:10.1007/s12213-013-0071-7

Download citation


  • Micro-robotics
  • Remote actuation
  • Micro-assembly