Gamma-ray astronomy as a milestone in the cosmic ray origin issue

  • Martina CardilloEmail author
A decade of AGILE
Part of the following topical collections:
  1. A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics


During the last years, high-energy astrophysics has not been considered at the same level as other scientific disciplines. In doing so, there is a very high risk neglecting the \(\gamma \)-ray energy band that has a strong importance to solve some still open issues. This paper is focused, in particular, on the galactic cosmic ray origin issue, and it shows how only a coexistence of low-energy (MeV–GeV) and high-energy (GeV–TeV) \(\gamma \)-ray instruments can allow us to solve this century-old issue.


Cosmic rays Gamma-ray astronomy CTA e-ASTROGAM AGILE 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abdo AA, Ackermann M, Ajello M et al (2010) Gamma-ray emission from the shell of supernova remnant W44 revealed by the Fermi LAT. Science 327:1103CrossRefGoogle Scholar
  2. Abramowski A, For the HESS collaboration (2016) Acceleration of petaelectronvolt protons in the Galactic Center. Nature 531:476CrossRefGoogle Scholar
  3. Ackermann M, Ajello M, Allafort A et al (2011) A Cocoon of freshly accelerated cosmic rays detected by Fermi in the cygnus superbubble. Science 334:1103CrossRefGoogle Scholar
  4. Ackermann M, Ajello M, Allafort A et al (2013) Detection of the characteristic Pion–Decay signature in supernova remnants. Science 339:807CrossRefGoogle Scholar
  5. Aharonian FA, Ruihzi Y, De Ona Wilhelmi E (2019) Massive stars as major factories of galactic cosmic rays. Nat Astron 3:561–567CrossRefGoogle Scholar
  6. Amato E (2014) The origin of galactic cosmic rays. IJMPD 23:7CrossRefGoogle Scholar
  7. Atwood WB, For the Fermi-LAT collaboration (2009) The large area telescope on the Fermi gamma-ray space telescope mission. ApJ 697:2CrossRefGoogle Scholar
  8. Binns WR, Wiedenbeck ME, Arnould M et al (2008) The OB association origin of galactic cosmic rays. New Astron Rev 52:427CrossRefGoogle Scholar
  9. Blandford RD, Cowie LL (1982) Radio emission from supernova remnants in a cloudy interstellar medium. ApJ 260:625CrossRefGoogle Scholar
  10. Cardillo M, Tavani M, Giuliani A et al (2014) The supernova remnant W44: confirmations and challengesfor cosmic-ray acceleration. A&A 565:A74CrossRefGoogle Scholar
  11. Cardillo M, Amato E, Blasi P (2015) On the cosmic ray spectrum from type II supernovae expanding in their red giant presupernova wind. Astropart Phys 69:1CrossRefGoogle Scholar
  12. Cardillo M, Amato E, Blasi P (2016) Supernova remnant W44: a case of cosmic-ray reacceleration. A&A 595:A58CrossRefGoogle Scholar
  13. Castelletti G, Dubner G, Brogan C et al (2007) The low-frequency radio emission and spectrum of the extended SNR W44: new VLA observations at 74 and 324 MHz. A&A 471:537CrossRefGoogle Scholar
  14. CTA consortium (2017) Science with the Cherenkov Telescope Array. arXiv:e170907997C
  15. De Angelis A, Tatischeff V, Tavani M, Oberlack U, Grenier IA et al (2017) The e-ASTROGAM mission (exploring the extreme Universe with gamma rays in the MeV–GeV range). Exp Astron 44:25–82CrossRefGoogle Scholar
  16. De Angelis A, Tatischeff V, Grenier IA et al (2018) Science with e-ASTROGAM (A space mission for MeV–GeV gamma-ray astrophysics). JHEAp 19:1Google Scholar
  17. Ferenc D, For MAGIC collaboration (2005) The MAGIC gamma-ray observatory. Nucl Instrum Methods Phys Res 553:274CrossRefGoogle Scholar
  18. Funk S (2016) Ground- and space-based gamma-ray astronomy. ARNPS 65:245Google Scholar
  19. Ghiotto A, for the VERITAS collaboration (2015) A deep observation of gamma-ray emission from Cassiopeia A using VERITASGoogle Scholar
  20. Giuliani A, Cardillo M, Tavani M et al (2011) Neutral pion emission from accelerated protons in the supernova remnants W44. ApJ 742:30CrossRefGoogle Scholar
  21. Hinton JA, For HESS collaboration (2004) The status of the HESS project. New Astron Rev 48:331CrossRefGoogle Scholar
  22. Jougler T, Funk S (2016) Revealing W51C as a cosmic ray source using Fermi-LAT data. Apj 816:100CrossRefGoogle Scholar
  23. Krennrich F, For VERITAS collaboration (2004) VERITAS: the very energetic radiation imaging telescope array system. New Astron Rev 48:345CrossRefGoogle Scholar
  24. Lee S, Patnaude DJ, Raymond JC et al (2015) Modeling bright Gamma-ray and radio emission at fast cloud shocks. ApJ 806:71CrossRefGoogle Scholar
  25. Morlino G, Bandiera R, Blasi P, Amato E (2012) Collisionless Shocks in a partially ionized medium II. Balmer emission. ApJ 760:137CrossRefGoogle Scholar
  26. Park N, For the VERITAS collaboration (2015) Study of high-energy particle acceleration in Tycho with gamma-ray observations. arXiv:1508.07068
  27. Tanaka T, Uchiyama Y, Aharonian FA et al (2008) Study of nonthermal emission from SNR RX J1713.7-3946 with Suzaku. ApJ 685:988–1004CrossRefGoogle Scholar
  28. Tavani M, For the AGILE collaboration (2009) The AGILE mission. A&A 502:995CrossRefGoogle Scholar
  29. Uchiyama Y, Blandford RD, Funk S et al (2010) \(\gamma \)-ray emission from crushed clouds in supernova remnants. ApJ 723:122CrossRefGoogle Scholar
  30. Vink J (2012) Supernova remnants: the X-ray perspectives. A&A Rev. 20:49CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.INAF-IAPSRomeItaly

Personalised recommendations