Transport cross sections from accurate intermolecular forces

  • Fernando Pirani
  • Mario Capitelli
  • Gianpiero Colonna
  • Annarita LaricchiutaEmail author
Classical and quantum plasmas
Part of the following topical collections:
  1. Classical and quantum plasmas: matter under extreme conditions


The experimental investigation of range and strength of the intermolecular interaction in some prototypical systems has been carried out with the molecular beam technique. The data analysis suggested the adoption of a phenomenological approach, useful to formulate the force fields in systems at increasing complexity and whose details required in several applications, including the description of transport phenomena, are difficult to extract from only standard theoretical methods. The phenomenological approach is here presented, reviewing the results obtained in the derivation of collision integrals relevant to the estimation of transport properties for plasmas of applied interest.

Graphical abstract


Interaction potential Phenomenological approach Elastic collisions Collision integrals Transport cross sections 



  1. Alagia M, Brunetti B, Candori P, Falcinelli S, Teixidor MM, Pirani F, Richter R, Stranges S, Vecchiocattivi F (2004) Low-lying electronic states of HBr2 +. J Chem Phys 120(15):6985–6991CrossRefGoogle Scholar
  2. André P, Bussière W, Rochette D (2007) Transport coefficients of Ag–SiO2 plasmas. Plasma Chem Plasma Process 27:381–403CrossRefGoogle Scholar
  3. Aquilanti V, Cappelletti D, Pirani F (1996) Range and strength of interatomic forces: dispersion and induction contributions to the bonds of dications and of ionic molecules. Chem Phys 209(2–3):299–311CrossRefGoogle Scholar
  4. Bartolomei M, Pirani F, Marques JMC (2017) Modeling coronene nanostructures: analytical potential, stable configurations and ab initio energies. J Phys Chem 121:14330–14338Google Scholar
  5. Brunetti B, Liuti G, Luzzatti E, Pirani F, Vecchiocattivi F (1981) Study of the interactions of atomic and molecular oxygen with O2 and N2 by scattering data. J Chem Phys 74(12):6734–6741CrossRefGoogle Scholar
  6. Bruno D, Laricchiuta A, Capitelli M, Catalfamo C (2007) Effect of electronic excited states on transport in magnetized hydrogen plasma. Phys Plasmas 14:022303CrossRefGoogle Scholar
  7. Bruno D, Catalfamo C, Capitelli M, Colonna G, De Pascale O, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F (2010) Transport properties of high-temperature Jupiter atmosphere components. Phys Plasmas 17(11):112315CrossRefGoogle Scholar
  8. Capitelli M (1977) Transport properties of partially ionized gases. J Phys Colloq 38(C3):227–237CrossRefGoogle Scholar
  9. Capitelli M, Lamanna U (1974) Collision integrals of electronically excited states and transport coefficients of thermal plasmas. J Plasma Phys 12:71–79CrossRefGoogle Scholar
  10. Capitelli M, Celiberto R, Gorse C, Laricchiuta A, Pagano D, Traversa P (2004) Transport properties of local thermodynamic equilibrium hydrogen plasmas including electronically excited states. Phys Rev E 69:026412CrossRefGoogle Scholar
  11. Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) On the possibility of using model potentials for collision integral calculations of interest for planetary atmospheres. Chem Phys 338:62–68CrossRefGoogle Scholar
  12. Capitelli M, Bruno D, Laricchiuta A (2013) Fundamental aspects of plasma chemical physics: transport, vol 74. Springer, New YorkGoogle Scholar
  13. Celiberto R, Lamanna U, Capitelli M (1998) Elastic, diffusion, and viscosity cross sections for collisions involving excited atomic hydrogen. Phys Rev A 58:2106–2114CrossRefGoogle Scholar
  14. Chen Z, Wu Y, Yang F, Sun H, Rong M, Wang C (2017) Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6–Cu mixture. J Phys D 50(41):415203CrossRefGoogle Scholar
  15. Colonna G, Laricchiuta A (2008) General numerical algorithm for classical collision integral calculation. Comput Phys Commun 178:809–816CrossRefGoogle Scholar
  16. Colonna G, D’Angola A, Pietanza LD, Capitelli M, Pirani F, Stevanato E, Laricchiuta A (2018) Thermodynamic and transport properties of plasmas including silicon-based compounds. Plasma Sources Sci Technol 27:015007CrossRefGoogle Scholar
  17. D’Angola A, Colonna G, Bonomo A, Bruno D, Laricchiuta A, Capitelli M (2012) A phenomenological approach for the transport properties of air plasmas. Eur Phys J D 66(8):205CrossRefGoogle Scholar
  18. Dhamale GD, Nath S, Mathe VL, Ghorui S (2017) Neutral-neutral and neutral-ion collision integrals for Y2O3–Ar plasma system. Phys Plasmas 24(6):063514CrossRefGoogle Scholar
  19. Eletskii A, Capitelli M, Celiberto R, Laricchiuta A (2004) Resonant charge exchange and relevant transport cross sections for excited states of oxygen and nitrogen atoms. Phys Rev A 69:042718CrossRefGoogle Scholar
  20. Ewig CS, Waldman M, Maple JR (2002) Ab initio atomic polarizability tensors for organic molecules. J Phys Chem A 106(2):326–334CrossRefGoogle Scholar
  21. Gavezzotti A (2003) Calculation of intermolecular interaction energies by direct numerical integration over electronic densities. An improved polarization model and the evaluation of dispersion and repulsion energies. J Phys Chem B 107(10):2344–2353CrossRefGoogle Scholar
  22. Hey JD, Chu CC, Hintz E (2000) Spectroscopic studies of cold atomic hydrogen and deuterium produced in a tokamak edge plasma. Contrib Plasma Phys 40(1–2):9CrossRefGoogle Scholar
  23. Kosarim AV, Smirnov BM, Capitelli M, Celiberto R, Laricchiuta A (2006) Resonant charge exchange involving electronically excited states of nitrogen atoms and ions. Phys Rev A 74:062707CrossRefGoogle Scholar
  24. Kosarim AV, Smirnov BM, Laricchiuta A, Capitelli M (2012) Resonant charge-exchange involving excited helium atoms and reactive transport of local thermodynamic equilibrium helium plasma. Phys Plasmas 19(6):062309CrossRefGoogle Scholar
  25. Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Classical transport collision integrals for a Lennard-Jones like phenomenological model potential. Chem Phys Lett 445:133–139CrossRefGoogle Scholar
  26. Laricchiuta A, Bruno D, Capitelli M, Catalfamo C, Celiberto R, Colonna G, Diomede P, Giordano D, Gorse C, Longo S, Pagano D, Pirani F (2009a) High temperature mars atmosphere. Part I: transport cross sections. Eur Phys J D 54:607–612CrossRefGoogle Scholar
  27. Laricchiuta A, Pirani F, Colonna G, Bruno D, Gorse C, Celiberto R, Capitelli M (2009b) Collision integrals for interactions involving atoms in electronically excites states. J Phys Chem A 113:15250–15256CrossRefGoogle Scholar
  28. Morgan JE, Schiff HI (1964) Diffusion coefficients of O and N atoms in inert gases. Can J Chem 42(10):2300–2306CrossRefGoogle Scholar
  29. Nikitin EEE, Smirnov BM (1978) Quasiresonant processes in slow collisions. Phys Usp 21(2):95CrossRefGoogle Scholar
  30. Niu C, Chen Z, Rong M, Wang C, Wu Y, Yang F, Wang X, Pang Q (2016) Calculation of 2-temperature plasma thermo-physical properties considering condensed phases: application to CO2–CH4 plasma: part 2. Transport coefficients. J Phys D 49(40):405204CrossRefGoogle Scholar
  31. Pirani F, Cappelletti D, Aquilanti V (1996) Measurement and nature of intermolecular forces: their role in gaseous properties. In: Capitelli M (ed) Molecular physics and hypersonic flows. Kluwer Academic, Dordrecht, p 351CrossRefGoogle Scholar
  32. Pirani F, Albertí M, Castro A, Moix Teixidor M, Cappelletti D (2004) Atom-bond pairwise additive representation for intermolecular potential energy surfaces. Chem Phys Lett 394:37–44CrossRefGoogle Scholar
  33. Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Experimental benchmarks and phenomenology of interatomic forces: open-shell and electronic anisotropy effects. Int Rev Phys Chem 25:165–199CrossRefGoogle Scholar
  34. Pirani F, Brizi S, Roncaratti LF, Casavecchia P, Cappelletti D, Vecchiocattivi F (2008) Beyond the Lennard-Jones model: a simple and accurate potential function probed by high resolution scattering data useful for molecular dynamics simulations. Phys Chem Chem Phys 10:5489–5503CrossRefGoogle Scholar
  35. Sourd B, André P, Aubreton J, Elchinger MF (2007) Influence of the excited states of atomic nitrogen N(2D) and N(2P) on the transport properties of nitrogen. Part I: atomic nitrogen properties. Plasma Chem Plasma Process 27:35CrossRefGoogle Scholar
  36. Stallcop JR, Partridge H, Levin E (2001) Effective potential energies and transport cross sections for atom-molecule interactions of nitrogen and oxygen. Phys Rev A 64(4):042722CrossRefGoogle Scholar
  37. van Duijnen PT, Swart M (1998) Molecular and atomic polarizabilities: Thole’s model revisited. J Phys Chem A 102(14):2399–2407CrossRefGoogle Scholar
  38. Vanne YV, Saenz A, Dalgarno A, Forrey RC, Froelich P, Jonsell S (2006) Doubly excited autoionizing states of H2 converging to the H(n = 2) + H(nʹ = 2) limit. Phys Rev A 73(6):062706CrossRefGoogle Scholar
  39. Wu Y, Wang C, Sun H, Murphy AB, Rong M, Yang F, Chen Z, Niu C, Wang X (2018) Properties of C4F7N–CO2 thermal plasmas: thermodynamic properties, transport coefficients and emission coefficients. J Phys D 51(15):155206CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations