Advertisement

Phyco-based synthesis of TiO2 nanoparticles and their influence on morphology, cyto-ultrastructure and metabolism of Spirulina platensis

  • Awatief F. Hifney
  • Dalia A. Abdel-WahabEmail author
Article
  • 15 Downloads

Abstract

The characterization of phyco-based synthesis of TiO2 NPs from Spirulina platensis (GSSp.TiO2 NPs) and the effect of such biosynthesized nanoparticles on morphology, growth, ultrastructure and enzymatic of the same alga have been studied. These nanoparticles have a good solubility, are stable in water and the average size was 17.3 nm. GSSp.TiO2 NPs aggregated and adsorbed on S. platensis membrane. Penetration and entrance of the nanoparticles into the Spirulina cells were also recorded which stimulated cell wall deformity, plasmolysis, and damage to both cell wall and plasma membrane, combined with the appearance of notch-like structure. A positive significant correlation was recorded between all applied concentrations of the biosynthesized nanoparticles and the antioxidant activities (CAT and APX) and LOX. More than 160 mg/l of GSSp.TiO2 NPs have a harmful impact on S. platensis, so nanoparticles have to be managed before disposal to protect our health and ecosystem.

Keywords

Antioxidant enzymes GSSp.TiO2 NPs Nanoparticle microbial synthesis SEM Spirulina platensis TEM 

Notes

Acknowledgements

This research did not receive any grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Al-Rubaee EA, Abd ST, Kadim NM (2015) The effect of titanium dioxide nanoparticles on salivary alkaline phosphatase activity. Eur J Mol Biotec 4:1813–1819.  https://doi.org/10.13187/ejmb.2015.10.188 Google Scholar
  2. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399.  https://doi.org/10.1146/annurev.arplant.55.031903.141701 CrossRefGoogle Scholar
  3. Aruoja V, Dubourguier H-C, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468.  https://doi.org/10.1016/j.toxlet.2008.06.088 CrossRefGoogle Scholar
  4. Asada K (1984) Chloroplasts: formation of active oxygen and its scavenging. Methods Enz 105:422–429.  https://doi.org/10.1016/s0076-6879(84)05059-x CrossRefGoogle Scholar
  5. Ayatallahzadeh Shirazi M, Shariati F, Keshavarz AK, Ramezanpour Z (2015) Toxic effect of aluminum oxide nanoparticles on green micro-algae Dunaliella salina. Int J Environ Res 9:585–594Google Scholar
  6. Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862.  https://doi.org/10.1021/ar2003368 CrossRefGoogle Scholar
  7. Chaturvedi S, Dave PN, Shah N (2012) Applications of nano-catalyst in new era. J Saudi ChemSoc 16:307–325.  https://doi.org/10.1016/j.jscs.2011.01.015 CrossRefGoogle Scholar
  8. Chen L, Rahme K, Holmes JD, Morris MA, Slater NK (2012a) Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation. Nanoscale Res Lett 7:1–10.  https://doi.org/10.1186/1556-276x-7-297 CrossRefGoogle Scholar
  9. Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G (2012b) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii. Ecotoxicol Environ Saf 84:155–162.  https://doi.org/10.1016/j.ecoenv.2012.07.019 CrossRefGoogle Scholar
  10. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360.  https://doi.org/10.1038/nrd1088 CrossRefGoogle Scholar
  11. Fawzy MA, Gomaa M, Hifney AF, Abdel-Gawad KM (2017) Optimization of alginate alkaline extraction technology from Sargassum latifolium and its potential antioxidant and emulsifying properties. Carbohydr Polym 157:1903–1912CrossRefGoogle Scholar
  12. Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–217.  https://doi.org/10.1007/s10534-007-9110-y CrossRefGoogle Scholar
  13. Gheda SF, Ahmed DA (2015) Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rend Fis Acc Lincei 26:121–131CrossRefGoogle Scholar
  14. Gupta S (1983) Autologous mixed lymphocyte reaction in health and disease states in man. Vox Sang 44:265–288.  https://doi.org/10.1111/j.1423-0410.1983.tb04483.x CrossRefGoogle Scholar
  15. Hartmann N, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269:190–197.  https://doi.org/10.1016/j.tox.2009.08.008 CrossRefGoogle Scholar
  16. Hifney AF, Issa AA, Fawzy MA (2013) Abiotic stress induced production of β-carotene, allophycocyanin and total lipids in Spirulina sp. J Biol Earth Sci 3:54–64Google Scholar
  17. Hifney AF, Fawzy MA, Abdel-Gawad KM, Gomaa M (2016) Industrial optimization of fucoidan extraction from Sargassum sp. and its potential antioxidant and emulsifying activities. Food Hydrocolloids 54:77–88.  https://doi.org/10.1016/j.foodhyd.2015.09.022 CrossRefGoogle Scholar
  18. Ismail MM, Gheda SF, Pereira L (2016) Variation in bioactive compounds in some seaweeds from Abo Qir bay. Alexandria, Egypt Rend Fis Acc Lincei 27:269–279CrossRefGoogle Scholar
  19. Iswarya V et al (2015) Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquat Toxicol 161:154–169.  https://doi.org/10.1016/j.aquatox.2015.02.006 CrossRefGoogle Scholar
  20. Ji J, Long Z, Lin D (2011) Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chem Eng J 170:525–530.  https://doi.org/10.1016/j.cej.2010.11.026 CrossRefGoogle Scholar
  21. Karakoti A, Hench L, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. J Min Met Mat S 58:77–82.  https://doi.org/10.1007/s11837-006-0147-0 CrossRefGoogle Scholar
  22. Kim J et al (2014) Non-monotonic concentration–response relationship of TiO2 nanoparticles in freshwater cladocerans under environmentally relevant UV-A light. Ecotox Environ Safe 101:240–247.  https://doi.org/10.1016/j.ecoenv.2014.01.002 CrossRefGoogle Scholar
  23. Liu J, Qiao SZ, Hu QH (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7:425–443.  https://doi.org/10.1002/smll.201001402 CrossRefGoogle Scholar
  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J biol Chem 193:265–275Google Scholar
  25. Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2009) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22:155–160.  https://doi.org/10.1021/cm902527n CrossRefGoogle Scholar
  26. Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impacts 15:145–160.  https://doi.org/10.1039/c2em30637a CrossRefGoogle Scholar
  27. Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327.  https://doi.org/10.1034/j.1399-3054.2002.1160306.x CrossRefGoogle Scholar
  28. Minguez-Mosquera M, Jaren-Galan M, Garrido-Fernandez J (1993) Lipoxygenase activity during pepper ripening and processing of paprika. Phytochemistry 32:1103–1108.  https://doi.org/10.1016/s0031-9422(00)95073-8 CrossRefGoogle Scholar
  29. Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140.  https://doi.org/10.1016/s0005-2728(00)00256-5 Google Scholar
  30. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotox Environ Safe 78:80–85.  https://doi.org/10.1016/j.ecoenv.2011.11.012 CrossRefGoogle Scholar
  31. Pérez-Pérez ME, Lemaire SD, Crespo JL (2012) Reactive oxygen species and autophagy in plants and algae. Plant Physiol 160:156–164.  https://doi.org/10.1104/pp.112.199992 CrossRefGoogle Scholar
  32. Petit A-N, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193.  https://doi.org/10.1016/j.aquatox.2010.01.019 CrossRefGoogle Scholar
  33. Raliya R, Biswas P, Tarafdar J (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L). Biotec Rep 5:22–26CrossRefGoogle Scholar
  34. Robichaud CO, Uyar AE, Darby MR, Zucker LG, Wiesner MR (2009) Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ Sci Technol 43:4227–4233.  https://doi.org/10.1021/es8032549 CrossRefGoogle Scholar
  35. Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotox Environ Safe 74:1180–1187.  https://doi.org/10.1016/j.ecoenv.2011.03.006 CrossRefGoogle Scholar
  36. Shahandashti SSK, Amiri RM, Zeinali H, Ramezanpour SS (2013) Change in membrane fatty acid compositions and cold-induced responses in chickpea. Mol Biol Rep 40:893–903.  https://doi.org/10.1007/s11033-012-2130-x CrossRefGoogle Scholar
  37. Sharma G, Kumar M, Ali MI, Jasuja ND (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J Micro Biochem Technol 2014:202–206.  https://doi.org/10.4172/1948-5948.1000144 Google Scholar
  38. Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 1:15.  https://doi.org/10.1186/1743-8977-9-20 Google Scholar
  39. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant physiol 141:384–390.  https://doi.org/10.1104/pp.106.078295 CrossRefGoogle Scholar
  40. Xie Y, Qian H, Zhong Y, Guo H, Hu Y (2012) Facile low-temperature synthesis of carbon nanotube/nanohybrids with enhanced visible-light-driven photocatalytic activity. Int J Photoenergy.  https://doi.org/10.1155/2012/682138 Google Scholar
  41. Zarouk C (1966) Contribution A L’etude D’une cyanophyceae. Influence de divers facteurs physiques el chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardna) GeitlerGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Botany and Microbiology Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Botany Department, Faculty of ScienceNew Valley UniversityEl KhargaEgypt

Personalised recommendations