Gamma-ray emitting binaries (GREBs) are complex systems. Its study became in the last years a major endeavour for the high-energy astrophysics community, both from an observational and a theoretical perspective. Whereas the accumulation of observation time for most Galactic gamma-ray sources is typically leading to highly accurate descriptions of their steady phenomenology, GREBs keep providing “exceptions to the rule” either through long-term monitoring of known systems or in the discovery of new sources of this class. Moreover, many GREBs have been identified as powerful radio, optical and X-ray emitters, and may significantly contribute as well to the Galactic cosmic-ray sea. Their understanding implies, therefore, solving a puzzle in a broad-band and multi-messenger context. In these proceedings we will summarise our current understanding of GREBs, emphasising the most relevant observational results and reviewing a number of controversial properties.


Gamma rays: observations Gamma rays: binaries Stars: massive Novae Pulsars: general 



  1. Abdo AA, Ackermann M, Ajello M (2010a) Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329:817CrossRefGoogle Scholar
  2. Abdo AA, Ackermann M, Ajello M (2010b) Fermi large area telescope observation of a gamma-ray source at the position of Eta Carinae. ApJ 723:649CrossRefGoogle Scholar
  3. Ackermann M, Ajello M, Albert A et al (2014) Fermi establishes classical novae as a distinct class of gamma-ray sources. Science 345:554CrossRefGoogle Scholar
  4. Aharonian F, Akhperjanian AG, Aye K-M et al (2005a) Discovery of the binary pulsar PSR B1259–63 in very-high-energy gamma rays around periastron with HESS. A&A 442:1CrossRefGoogle Scholar
  5. Aharonian F, Akhperjanian AG, Aye K-M (2005b) Discovery of very high energy gamma rays associated with an X-ray binary. Science 309:746CrossRefGoogle Scholar
  6. Aharonian FA, Akhperjanian AG, Bazer-Bachi AR et al (2007) Discovery of a point-like very-high-energy \(\gamma \)-ray source in Monoceros. A&A 469:L1CrossRefGoogle Scholar
  7. Ahnen ML, Ansoldi S, Antonelli LA et al (2015) Very high-energy \(\gamma \)-ray observations of novae and dwarf novae with the MAGIC telescopes. A&A 582:A67CrossRefGoogle Scholar
  8. Albert J, Aliu E, Anderhub H (2006) Variable very-high-energy gamma-ray emission from the microquasar LS I +61 303. Science 312:1771CrossRefGoogle Scholar
  9. Albert J, Aliu E, Anderhub H (2007) Detection of gamma-ray emission from the Eta-Carinae region. ApJL 665:L51CrossRefGoogle Scholar
  10. Aliu E, Archambault S, Arlen T (2012) VERITAS observations of the Nova in V407 Cygni. ApJ 754:77CrossRefGoogle Scholar
  11. Archambault S, Beilicke M, Benbow W (2013) VERITAS observations of the microquasar Cygnus X-3. ApJ 779:150CrossRefGoogle Scholar
  12. Archibald AM, Stairs IH, Ransom SM (2009) A radio pulsar/X-ray binary link. Science 324:1411CrossRefGoogle Scholar
  13. Atoyan AM, Aharonian FA (1999) Modelling of the non-thermal flares in the Galactic microquasar GRS 1915+105. MNRAS 302:253CrossRefGoogle Scholar
  14. Benaglia P, Romero GE (2003) Gamma-ray emission from Wolf-Rayet binaries. A&A 399:1121CrossRefGoogle Scholar
  15. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. MNRAS 179:433CrossRefGoogle Scholar
  16. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883CrossRefGoogle Scholar
  17. Bogdanov S, Grindlay JE, van den Berg M (2005) An X-ray variable millisecond pulsar in the globular cluster 47 Tucanae: Closing the link to low-mass x-ray binaries. ApJ 630:1029CrossRefGoogle Scholar
  18. Bogovalov SV, Aharonian FA (2000) Very-high-energy gamma radiation associated with the unshocked wind of the Crab pulsar. MNRAS 313:504CrossRefGoogle Scholar
  19. Bordas P, Bosch-Ramon V, Paredes JM, Perucho M (2009) Non-thermal emission from microquasar/ISM interaction. A&A 497:325CrossRefGoogle Scholar
  20. Bordas P, Yang R, Kafexhiu E, Aharonian F (2015) Detection of persistent gamma-ray emission toward SS433/W50. ApJL 807:L8CrossRefGoogle Scholar
  21. Bosch-Ramon V, Aharonian FA, Paredes JM (2005) Electromagnetic radiation initiated by hadronic jets from microquasars in the ISM. A&A 432:609CrossRefGoogle Scholar
  22. Bosch-Ramon V, Romero GE, Paredes JM (2006) A broadband leptonic model for gamma-ray emitting microquasars. A&A 447:263CrossRefGoogle Scholar
  23. Chardin G, Gerbier G (1989) Cygnus X-3 at high energies—a critical analysis of observational results. A&A 210:52Google Scholar
  24. Cheung CC, Glanzman T, Hill AB (2012a) Fermi LAT Detection of a New Galactic Bulge Gamma-ray Transient in the Scorpius Region: Fermi J1750-3243, and its possible association with Nova Sco 2012. The Astron Telegr 4284Google Scholar
  25. Cheung CC, Hays E, Venters T, Donato D, Corbet RHD (2012b) Fermi LAT detection of a new gamma-ray transient in the galactic plane: Fermi J0639+0548. Astron Telegr 4224Google Scholar
  26. Cheung CC, Jean P, Shore SN (2013) Fermi-LAT observations of Nova V1369 Centauri 2013 brightening in gamma rays. Astron Telegr, 5653Google Scholar
  27. Cheung CC, Jean P, Shore SN (2015) Further Fermi-LAT gamma-ray observations of Nova Sagittarii 2015 No. 2. Astron Telegr 7315Google Scholar
  28. Cheung CC, Jean P, Shore SN, Fermi Large Area Telescope Collaboration (2016a) Fermi-LAT gamma-ray observations of Nova Lupus 2016 (ASASSN-16kt). The Astronomer’s Telegram, 9594Google Scholar
  29. Cheung CC, Jean P, Shore SN, Fermi Large Area Telescope Collaboration. (2016b) Fermi-LAT Gamma-ray Observations of Nova Lupus 2016 (ASASSN-16kt). The Astronomer’s Telegram, 9594Google Scholar
  30. Cheung CC, Jean P, Shore SN (2016c) Fermi-LAT gamma-ray detections of classical Novae V1369 Centauri 2013 and V5668 Sagittarii 2015. ApJ 826:142CrossRefGoogle Scholar
  31. Chomiuk L, Linford JD, Yang J et al (2014) Binary orbits as the driver of \(\gamma \)-ray emission and mass ejection in classical novae. Nature 514:339CrossRefGoogle Scholar
  32. Collaboration Fermi LAT, Abdo AA, Ackermann M (2009) Modulated high-energy gamma-ray emission from the microquasar Cygnus X-3. Science 326:1512CrossRefGoogle Scholar
  33. Collaboration HESS, Abramowski A, Acero F et al (2012) HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae. MNRAS 424:128CrossRefGoogle Scholar
  34. Corbel S, Fender RP, Tzioumis AK (2002) Large-scale, decelerating, relativistic X-ray Jets from the Microquasar XTE J1550–564. Science 298:196CrossRefGoogle Scholar
  35. Corbet RHD, Cheung CC, Kerr M et al (2011) 1FGL J1018.6-5856: a New Gamma-ray Binary. The Astronomer’s Telegram, 3221Google Scholar
  36. Corbet RHD, Chomiuk L, Coe MJ (2016) A luminous gamma-ray binary in the large magellanic cloud. ApJ 829:105CrossRefGoogle Scholar
  37. De Becker M (2007) Non-thermal emission processes in massive binaries. Astron Astrophys Rev 14:171CrossRefGoogle Scholar
  38. de Martino D, Falanga M, Bonnet-Bidaud J-M et al (2010) The intriguing nature of the high-energy gamma ray source XSS J12270–4859. A&A 515:A25CrossRefGoogle Scholar
  39. Dermer CD, Böttcher M (2006) Gamma rays from compton scattering in the jets of microquasars: application to LS 5039. ApJ 643:1081CrossRefGoogle Scholar
  40. Díaz Trigo M, Miller-Jones JCA, Migliari S, Broderick JW, Tzioumis T (2013) Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U1630-47. Nature 504:260CrossRefGoogle Scholar
  41. Dubus G (2006) Gamma-ray binaries: pulsars in disguise? A&A 456:801CrossRefGoogle Scholar
  42. Dubus G (2013) Gamma-ray binaries and related systems. Astron Astrophys Rev 21:64CrossRefGoogle Scholar
  43. Eger P, Laffon H, Bordas P et al (2016) Discovery of a variable X-ray counterpart to HESS J1832–093: a new gamma-ray binary? MNRAS 457:1753CrossRefGoogle Scholar
  44. Farnier C, Walter R, Leyder J-C (2011) \(\eta \) Carinae: a very large hadron collider. A&A 526:A57CrossRefGoogle Scholar
  45. Franckowiak A, Jean P, Wood M, Cheung CC, Buson S (2018) Search for gamma-ray emission from Galactic novae with the Fermi -LAT. A&A 609:A120CrossRefGoogle Scholar
  46. Hadasch D, Torres DF, Tanaka T (2012) Long-term monitoring of the high-energy \(\gamma \)-Ray emission from LS I +61 303 and LS 5039. ApJ 749:54CrossRefGoogle Scholar
  47. Hays E, Cheung T, Ciprini S (2013) Detection of gamma rays from Nova Delphini 2013. The Astron Telegr 5302Google Scholar
  48. Heinz S, Sunyaev R (2002) Cosmic rays from microquasars: a narrow component to the CR spectrum? A&A 390:751CrossRefGoogle Scholar
  49. HESS Collaboration, Abramowski A, Acero F, et al. (2015) Discovery of the VHE gamma-ray source HESS J1832-093 in the vicinity of SNR G22.7-0.2. MNRAS, 446:1163Google Scholar
  50. HESS Collaboration, Abdalla H, Abramowski A, et al (2018) A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations. A&A, 612:A10Google Scholar
  51. Kennel CF, Coroniti FV (1984) Confinement of the Crab pulsar’s wind by its supernova remnant. ApJ 283:694CrossRefGoogle Scholar
  52. Khangulyan D, Aharonian FA, Bogovalov SV, Ribó M (2012) Post-periastron gamma-ray flare from PSR B1259–63/LS 2883 as a result of comptonization of the cold pulsar wind. ApJL 752:L17CrossRefGoogle Scholar
  53. Kong SW, Cheng KS, Huang YF (2012) Modeling the multiwavelength light curves of PSR B1259–63/LS 2883. II. The effects of anisotropic pulsar wind and doppler boosting. ApJ 753:127CrossRefGoogle Scholar
  54. Leser E, Ohm S, Füßling M et al (2017) First Results of Eta Car Observations with H.E.S.S.II. arXiv: 1708.01033
  55. Leyder J-C, Walter R, Rauw G (2008) Hard X-ray emission from \(\eta \) Carinae. A&A 477:L29CrossRefGoogle Scholar
  56. Li K-L, Chomiuk L (2016) Fermi-LAT detection of the Galactic nova TCP J18102829-2729590. Astron Telegr 9699Google Scholar
  57. Li K-L, Chomiuk L, Strader J (2016) Fermi-LAT detection of a very bright gamma-ray onset from the Galactic Nova ASASSN-16ma. Astron Telegr 9736Google Scholar
  58. Loh A, Corbel S, Dubus G et al (2016) High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst. MNRAS 462:L111CrossRefGoogle Scholar
  59. Lucarelli F, Verrecchia F, Striani E et al (2010) AGILE detection of the new unidentified gamma-ray source AGL J2241+4454. Astrono Telegr 2761Google Scholar
  60. Lyne AG, Stappers BW, Keith MJ et al (2015) The binary nature of PSR J2032+4127. MNRAS 451:581CrossRefGoogle Scholar
  61. Malyshev D, Zdziarski AA, Chernyakova M (2013) High-energy gamma-ray emission from Cyg X-1 measured by Fermi and its theoretical implications. MNRAS 434:2380CrossRefGoogle Scholar
  62. Markoff S, Falcke H, Fender R (2001) A jet model for the broadband spectrum of XTE J1118+480. Synchrotron emission from radio to X-rays in the Low/Hard spectral state. A&A 372:L25CrossRefGoogle Scholar
  63. Martin P, Dubus G (2013) Particle acceleration and non-thermal emission during the V407 Cygni nova outburst. A&A 551:A37 CrossRefGoogle Scholar
  64. Martin P, Dubus G, Jean P, Tatischeff V, Dosne C (2018) Gamma-ray emission from internal shocks in novae. A&A 612:A38 CrossRefGoogle Scholar
  65. Massi M, Jaron F (2013) Long-term periodicity in LS I +61\({\deg }\)303 as beat frequency between orbital and precessional rate. A&A 554:A105CrossRefGoogle Scholar
  66. Metzger BD, Hascoët R, Vurm I (2014) Shocks in nova outflows - I. Thermal emission. MNRAS 442:713CrossRefGoogle Scholar
  67. Metzger BD, Caprioli D, Vurm I et al (2016) Novae as Tevatrons: prospects for CTA and IceCube. MNRAS 457:1786CrossRefGoogle Scholar
  68. Migliari S, Fender R, Méndez M (2002) Iron emission lines from extended X-ray Jets in SS 433: reheating of atomic nuclei. Science 297:1673CrossRefGoogle Scholar
  69. Mirabel IF (2006) Very energetic gamma-rays from microquasars and binary pulsars. Science 312:1759CrossRefGoogle Scholar
  70. Mirabel IF, Rodríguez LF (1994) A superluminal source in the Galaxy. Nature 371:46CrossRefGoogle Scholar
  71. Mirabel IF, Rodriguez LF, Cordier B, Paul J, Lebrun F (1992) A double-sided radio jet from the compact Galactic Centre annihilator 1E1740.7-2942. Nature 358:215CrossRefGoogle Scholar
  72. Mori K, Gotthelf EV, Hailey CJ (2017) NuSTAR hard X-ray observation of the gamma-ray binary candidate HESS J1832–093. ApJ 848:80CrossRefGoogle Scholar
  73. Ohm S, Hinton JA, Domainko W (2010) Particle acceleration in the expanding blast wave of \(\eta \) Carina’s Great Eruption of 1843. ApJL 718:L161CrossRefGoogle Scholar
  74. Paredes JM (2011) Gamma-ray binaries: microquasars and binary systems with pulsar. arXiv:1101.4843
  75. Pshirkov MS (2016) The Fermi-LAT view of the colliding wind binaries. MNRAS 457:L99CrossRefGoogle Scholar
  76. Reitberger K, Reimer O, Reimer A et al (2012) Gamma-ray follow-up studies on \(\eta \) Carinae. A&A 544:A98CrossRefGoogle Scholar
  77. Romero GE, Torres DF, Kaufman Bernadó MM, Mirabel IF (2003) Hadronic gamma-ray emission from windy microquasars. A&A 410:L1CrossRefGoogle Scholar
  78. Romero GE, Okazaki AT, Orellana M, Owocki SP (2007) Accretion vs. colliding wind models for the gamma-ray binary LS I +61 303: an assessment. A&A 474:15CrossRefGoogle Scholar
  79. Sabatini S, Tavani M, Coppi P (2013) Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states. ApJ 766:83CrossRefGoogle Scholar
  80. Saito TY, Zanin R, Bordas P, et al (2009) Microquasar observations with the MAGIC telescope. arXiv:0907.1017
  81. Tatischeff V, Hernanz M (2007) Evidence for nonlinear diffusive shock acceleration of cosmic rays in the 2006 outburst of the recurrent Nova RS Ophiuchi. ApJL 663:L101CrossRefGoogle Scholar
  82. Tavani M, Bulgarelli A, Piano G et al (2009) Extreme particle acceleration in the microquasar CygnusX-3. Nature 462:620CrossRefGoogle Scholar
  83. Tavani M, Sabatini S, Pian E (2009) Detection of gamma-ray emission from the Eta-Carinae region. ApJL 698:L142CrossRefGoogle Scholar
  84. Werner M, Reimer O, Reimer A, Egberts K (2013) Fermi-LAT upper limits on gamma-ray emission from colliding wind binaries. A&A 555:A102CrossRefGoogle Scholar
  85. Wu EMH, Takata J, Cheng KS et al (2012) Orbital-phase-dependent \(\gamma \)-Ray Emissions from the Black Widow Pulsar. ApJ 761:181CrossRefGoogle Scholar
  86. Zabalza V, Bosch-Ramon V, Aharonian F, Khangulyan D (2013) Unraveling the high-energy emission components of gamma-ray binaries. A&A 551:A17CrossRefGoogle Scholar
  87. Zanin R, Fernández-Barral A, de Oña Wilhelmi E et al (2016) Gamma rays detected from Cygnus X-1 with likely jet origin. A&A 596:A55CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.ICCUB, Department of Quantum Physics and AstrophysicsUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations