Advertisement

Abstract

Direct measurements on cosmic rays in the energy region between tens MeV/n and few TeV/n have been extensively performed since the sixties by experiments on board stratospheric balloons, satellites, and Space Stations. The main goals have been the search for primordial antimatter, dark matter annihilation signals and exotic particles and the study of the mechanisms of production, acceleration and propagation of cosmic rays. A review of the major results up to an energy of few TeV obtained by the previous and the current experiments is presented in this article.

Keywords

Cosmic rays Energy spectra Dark matter 

Notes

References

  1. Abe K et al (2008) Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-polar antarctic flight. Phys Lett B 670:103CrossRefGoogle Scholar
  2. Abe K et al (2016) Measurements of cosmic-ray proton and helium spectra from the BESS-polar long-duration balloon flights over antarctica. Astrophys J 822:65CrossRefGoogle Scholar
  3. Accardo L et al (2014) High statistics measurement of the positron fraction in primary cosmic rays of 0.5–500 GeV with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 113:121101CrossRefGoogle Scholar
  4. Ackermann M et al (2012) Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. Phys Rev Lett 108:011103CrossRefGoogle Scholar
  5. Adriani O et al (2009) An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458:607CrossRefGoogle Scholar
  6. Adriani O et al (2010) PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy. Phys Rev Lett 105:121101CrossRefGoogle Scholar
  7. Adriani O et al (2011) Cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV. Phys Rev Lett 106:201101CrossRefGoogle Scholar
  8. Adriani O et al (2011) PAMELA measurements of cosmic-ray proton and helium spectra. Science 332:69CrossRefGoogle Scholar
  9. Adriani O et al (2013) Cosmic-ray positron energy spectrum measured by PAMELA. Phys Rev Lett 111:081102CrossRefGoogle Scholar
  10. Adriani O et al (2014) Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment. Astrophys J 791:93CrossRefGoogle Scholar
  11. Adriani O et al (2016) Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015. Phys Rev Lett 116:241105CrossRefGoogle Scholar
  12. Adriani O et al (2017) Energy spectrum of cosmic-ray electron and positron from 10 GeV to 3 TeV observed with the calorimetric electron telescope on the international space station. Phys Rev Lett 119:181101CrossRefGoogle Scholar
  13. Aguilar M et al (2014) Electron and positron fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 113:121102CrossRefGoogle Scholar
  14. Aguilar M et al (2015) Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 114:171103CrossRefGoogle Scholar
  15. Aguilar M et al (2015) Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 115:211101CrossRefGoogle Scholar
  16. Aguilar M et al (2016) Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 117:091103CrossRefGoogle Scholar
  17. Aguilar M et al (2016) Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station. Phys Rev Lett 117:231102CrossRefGoogle Scholar
  18. Aharonian F et al (2008) Energy spectrum of cosmic-ray electrons at TeV energies. Phys Rev Lett 101:261104CrossRefGoogle Scholar
  19. Aharonian F et al (2009) Probing the ATIC peak in the cosmic-ray electron spectrum with H.E.S.S. Astron Astrophys 508:561CrossRefGoogle Scholar
  20. Ambrosi G et al (2017) Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature 552:6366Google Scholar
  21. Blasi P (2009) Origin of the positron excess in cosmic rays. Phys Rev Lett 103:051104CrossRefGoogle Scholar
  22. Bogomolov E et al (1979) A stratospheric magnetic spectrometer investigation of the singly charged component spectra and composition of the primary and secondary cosmic radiation. Proc 16th Int Cosmic Ray Conf 1:330Google Scholar
  23. Golden RL et al (1979) Evidence for the existence of cosmic ray anti-protons. Phys Rev Lett 43:1196CrossRefGoogle Scholar
  24. Kounine A et al (2015) Latest Alpha Magnetic Spectrometer results: positron fraction and pbar/p ratio, In: ICRC2015 conference proceedings, PoS300Google Scholar
  25. Picozza P et al (2007) A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart Phys 27:296CrossRefGoogle Scholar
  26. Picozza P, Marcelli L (2008) Antimatter and dark matter: lessons from ballooning. Mem Della Società Astron Italiana 79(3):823Google Scholar
  27. Shaviv NJ (2009) Inhomogeneity in cosmic ray sources as the origin of the electron spectrum and the PAMELA anomaly. Rev Lett 103:111302CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.INFN and University of Rome Tor VergataRomeItaly
  2. 2.INFN, Section of Rome Tor VergataRomeItaly

Personalised recommendations