Discovery of native aluminum on Variscan metagranitoids in Upper Carinthia, Austria: natural or anthropogenic origin?

  • Werner H. Paar
  • Chi MaEmail author
  • Dan Topa
  • Franz J. Culetto
  • Vera F. M. Hammer
  • Yunbin Guan
  • Richard S. W. Braithwaite


Native aluminum was discovered in 2004 at Hochwurten, Goldberg mountain group, Upper Carinthia, Austria. The discovery site is close to the Wurtenkees (glacier), where the dominant rock (Central gneiss) was exposed during the retreat of the glacier. Here, also veins with gold-bearing ores associated with tellurides (tetradymite, tsumoite, joséite-A) and Ag–Pb–Bi-sulfosalts are exposed and were mined intermittently during the last centuries. Native aluminum occurs at some distance (several 100 m laterally and vertically) to the veins as an isolated crystalline aggregate measuring 10 × 3 mm, and a closely associated flake (200 µm length), which was used for most of the studies. Both occur on gneiss and are intensely intergrown with it. Two groups of inclusions in the aluminum were observed and studied by SEM and EPMA. Group one consists of Bi–Te–(S)–(O) minerals, such as tetradymite, Bi2Te2S, tsumoite, BiTe, tellurobismuthite, Bi2Te3, bismuth and a montanite-type secondary mineral. The other group contains a new phase with composition (Al,Si)19Fe4, rare grains of hollisterite (Al3Fe), and abundant Zn,Mg-bearing metallic nano-phases. A transition zone is developed between native aluminum and albite, a constituent of the gneiss, and is characterized by strongly changing concentrations of aluminum, silicon, iron and sulfur. Micro-computed tomography studies reveal that the Al metal is clearly intermixed with the host rock and not just juxtaposed over it. To shed further light on the origin of the Al metal, SIMS Mg isotopic measurements were carried out on the Austrian aluminum and on selected synthetic alloys with similar composition. A thorough discussion about the possible naturalness of this native aluminum and its possible formation is presented. The paper aims at augmenting the rare, assured knowledge of native metal formation/alteration under crustal and subcrustal conditions.


Aluminum Goldberg group Hochwurten Austria Tellurides Unnamed (Al,Si)19Fe4 Micro-CT EPMA SIMS Mg isotopes Al naturalness Metallogeny Origin 



Our special thanks go to Prof. Vesselin M. Dekov, University of Sofia, Bulgaria, for his motivating comments and pioneering work on the find of native aluminum. We acknowledge the expert help of Dr. Wolfgang Greibl, Federal Ministry of the Interior, Vienna, for the first results from GADDS/XRF/EDS total sample analyses; nanotomographic measurements and interpretation of data was kindly done by Mag.a Jördis Rosc, Materials Center Leoben Forschung GmbH (MCL). The authors thank Ing. Walter Eisler, Doppelmayr (Korneuburg) and Mr. Adolf Gugganig, BL Moelltaler Gletscherbahnen (Flattach) for detail information on materials and technological processes in the Hochwurten ski lifts’ construction phase. Help in the local map and ortho-photo context by Dr. Michael Marketz and DI. Harald Felsberger, KNG-Kärnten Netz GmbH (Klagenfurt a.W.), as well as support by Mrs Theresia Culetto (Obervellach) in connection with the Moell Valley 1944 meteor(?) observation, and by Prof. Christian Köberl (NHM Vienna) in excluding meteorite falls/finds in the Wurten region are gratefully acknowledged. We further thank Ing. Werner Tobisch/EMD, BMLV (Vienna) for his help concerning WW2-time aircraft parts/load-jettisoning as potential source of aluminum alloys in the Hochwurten area, and Ing. Roman Vala, MBA (Research and Development Manager) as well as Mr. Pavel Kubenka (Area Sales Manager), Austin Detonator (Vsetin, Czech Republic) for their valuable expert comments on commercial detonator shell materials. Last but not least, we thank Dr. Gerhard Diendorfer, OVE (Vienna) for communication and valuable help in interpretation of his ALDIS database special query’s results, and Mr. Matthias Reinhardt for his excellent quality photo of the aluminum aggregate. Finally, we thank two reviewers for their very constructive reviews.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. ALDIS (Austrian Lightning Detection and Information System)—A Cooperation of OVE (Österreichischer Verband für Elektrotechnik) and APG—Austrian Power Grid AG, Vienna. ALDIS is a member of EUCLID, the European Cooperation for Lightning DetectionGoogle Scholar
  2. aluMATTER (2007) MATTER Project, The University of Liverpool (2001–2007). Former website (accessed in 2007), developed in partnership between the European Aluminium Association and the MATTER Project
  3. Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron beam X-ray-analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200Google Scholar
  4. Austin Detonator/Czech Republic (2017) Explosives expert statements on detonator component materials by Vala R, Research and Development Manager and Kubenka P, Area Sales Manager. Austin Detonator, s.r.o. Vsetin 75501, Czech RepublicGoogle Scholar
  5. Austin Powder Company (2002) The Blaster’s Guide. A Resource for the Explosives and Blasting Industry (complete web-version including updates/revisions 2016), p 174. Electric and Electronic Detonators Safety Data Sheet P-9, Sect. 3. Austin Powder Company, Inc., Cleveland, Ohio, USAGoogle Scholar
  6. Aviation Safety Network (ASN) Database, year 1941. Flight Safety Foundation websiteGoogle Scholar
  7. Benning LG, Seward TM (1996) Hydrosulphide complexing of Au1+ in hydrothermal solutions from 150–400 °C and 500–1500 bar. Geochim Cosmochim Acta 60:1849–1871CrossRefGoogle Scholar
  8. Bindi L, Eiler JM, Guan Y, Hollister LS, MacPherson GJ, Steinhardt PJ, Yao N (2012) Evidence for the extra-terrestrial origin of a natural quasicrystal. Proc Natl Acad Sci 109:1396–1401CrossRefGoogle Scholar
  9. Bindi L, Lin C, Ma C, Steinhardt PJ (2016) Collisions in outer space produced an icosahedral phase in the Khatyrka meteorite never observed previously in the laboratory. Sci Rep 6:38117CrossRefGoogle Scholar
  10. Bouška V, Feldman VI (1994) Terrestrial and lunar, volcanic and impact glasses, tectites and fulgurites. In: Marfunin AS (ed) Advanced Mineralogy, vol 1. Composition, structure and properties of mineral matter: concepts, results and problems. Springer, Berlin, pp 258–265Google Scholar
  11. Bucher K, Grapes R (2011) Petrogenesis of metamorphic rocks, 8th edn. Springer, Heidelberg, p 428CrossRefGoogle Scholar
  12. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology. A technology for crystal growth and materials processing, 1st edn. Noyes Publications, New York, p 893Google Scholar
  13. Cahn RW (1998) Materials science—a precious stone that isn’t. Nature 39:523–524CrossRefGoogle Scholar
  14. Chase MW Jr (1998) NIST—JANAF Thermochemical Tables, 4th edn. J Phys Chem Ref Data, Monograph 9: 154 (online resource: NIST Chemistry WebBook)Google Scholar
  15. Chen Z, Huang CY, Zhao M, Yan W, Chien CW, Chen M, Yang H, Machiyama H, Lin S (2011) Characteristics and possible origin of native aluminum in cold seep sediments from the northeastern South China Sea. J Asian Earth Sci 40:363–370CrossRefGoogle Scholar
  16. Chuchra A, Stevenson T (2002) Thermoelectric coolers, p 474 (survey of spaceborne TECs). In: Gilmore DG (ed) Spacecraft thermal control handbook I, vol 13, 2nd edn. The Aerospace Press, El SegundoGoogle Scholar
  17. Cooper M, Robinson K (1966) The crystal structure of the ternary alloy α (AlMnSi). Acta Cryst 2:614–617CrossRefGoogle Scholar
  18. DAACDA: Downed Allied Aircrew Database Austria. In: Hoffmann G, Goll N (eds) Data gathered. (current online resource as accessed in 2018)
  19. Davis JR (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, pp 41, 43Google Scholar
  20. Dekov VM, Arnaudov V, Munnik F, Boycheva TB, Fiore S (2009) LETTER Native aluminum: does it exist? Am Miner 94:1283–1286CrossRefGoogle Scholar
  21. Dewan MA, Rhamdhani MA, Brooks GA, Monaghan BJ, Prentice L (2013) Alternative Al production methods: part 2—thermodynamic analyses of indirect carbothermal routes. Trans Inst Mining Metall Sect C Miner Process Extract Metall 122(2):113–121Google Scholar
  22. Digne M, Sautet P, Raybaud P, Toulhoat H, Artacho E (2002) Structure and stability of aluminum hydroxides: a theoretical study. J Phys Chem B 106:5155–5162CrossRefGoogle Scholar
  23. Droop GTR (1985) Alpine metamorphism in the south-east Tauern Window, Austria. 1. PT variation in space and time. J Metamorph Geol 1985:371–402CrossRefGoogle Scholar
  24. Dunn BD (2016) Materials and processes for spacecraft and high reliability applications. 2.4 materials for space launch vehicles. Springer, Berlin, p 667Google Scholar
  25. Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal–silicate liquid immiscibility. Science 234(4773):189–193CrossRefGoogle Scholar
  26. European Standard EN 573-3 (D) (2009) Aluminium and aluminium alloys—chemical composition and form of wrought products—Part 3: Chemical composition, p 14Google Scholar
  27. Feitzinger G (1992) Gold-Silber-Vererzungen und historischer Bergbau im Zirknitz und Wurtental (Sonnblickgruppe, Hohe Tauern, Kärnten). Lapis Mineralienmagazin, Jg17, Nr.5: 13–30, 50. Christian Weise Verlag, München (in German) Google Scholar
  28. Feitzinger G, Paar WH (1991) Gangförmige Gold-Silber-Vererzungen in der Sonnblickgruppe (Hohe Tauern, Kärnten). Arch Lagerstättenforschung Geol Bundesanstalt Wien 13:17–50 (in German) Google Scholar
  29. Ferro R, Saccone A, Macciò D, Delfino S (2003) A survey of gold intermetallic chemistry. Gold Bull 36(2):39–50CrossRefGoogle Scholar
  30. Fialin M, Catillon G, Andrault D (2009) Disproportionation of Fe2+ in Al-free silicate perovskite in the laser heated diamond anvil cell as recorded by electron probe microanalysis of oxygen. Phys Chem Miner 36:183–191CrossRefGoogle Scholar
  31. Foster LM, Long G, Hunter MS (1956) Reactions between aluminum oxide and carbon. The Al2O3—Al4C3 phase diagram. J Am Ceram Soc 39:1–11CrossRefGoogle Scholar
  32. Frank W, Höck V, Miller Ch (1987) Metamorphic and tectonic history of the central Tauern Window. In: Flügel HW, Faupl P (eds) Geodynamics of the Eastern Alps. Franz Deuticke, Wien, pp 35–54Google Scholar
  33. Frost BR (1985) On the stability of sulfides, oxides, and native metals in serpentinite. J Petrol 26:31–63CrossRefGoogle Scholar
  34. Frost BR, Mavrogenes JA, Tomkins AG (2002) Partial melting of sulfide ore deposits during medium- and high-grade metamorphism. Can Mineral 40:1–18CrossRefGoogle Scholar
  35. Gmelin Handbuch der anorganischen Chemie, 8. Auflage (1954) Gold, Lieferung 2, System-Nummer 62. Verlag Chemie GmbH, Weinheim, p 109 (in German) Google Scholar
  36. Goll N-M, Hoffmann G (2016) Missing in action—failed to return. Members of the American and British Air Forces killed in the air war over present-day Austria (1939–1945). A memorial book, p 267. Online resource as accessed in 2018. (ISBN: 978-3-9504258-0-2)
  37. Grapes R (2006) Pyrometamorphism. Springer, Berlin, p 275Google Scholar
  38. Greenwood JP, Hess PC (1998) Congruent melting kinetics of albite: theory and experiment. J Geophys Res 103(B12):29815–29828CrossRefGoogle Scholar
  39. Günther W, Paar WH, Gruber F, Höck V (2000) Schatzkammer Hohe Tauern—2000 Jahre Goldbergbau. Verlag Anton Pustet, Salzburg-München, p 408S (in German) Google Scholar
  40. Halmann M, Frei A, Steinfeld A (2007) Carbothermal reduction of alumina: thermochemical equilibrium calculations and experimental investigation. Energy 32(12):2420–2427CrossRefGoogle Scholar
  41. Höck V (2006) Die Hohen Tauern im geologischen Überblick (mit Beiträgen von Slupetzky H und Stocker HE, plus summary: geology of the Hohe Tauern region—an overview). In: Paar WH, Günther W, Gruber F (eds) Das Buch vom Tauerngold. Verlag Anton Pustet, Salzburg, pp S 11–S 28 (in German with English summaries) Google Scholar
  42. Hollister LS, Bindi L, Yao N, Poirier GR, Andronicos CL, MacPherson GJ, Lin C, Distler VV, Eddy MP, Kostin A, Kryachko V, Steinhardt WM, Yudovskaya M, Eiler JM, Guan Y, Clarke JJ, Steinhardt PJ (2014) Impact-induced shock and the formation of natural quasicrystals in the early Solar system. Nature Communications 5:4040CrossRefGoogle Scholar
  43. Hussey GF Jr (1946a) British Explosive Ordnance OP 1665, Part I—Chapter 11: incendiary bombs. US Navy Department, Bureau of Ordnance, Washington DC, pp 65–79 (1946 version and 1970 change) Google Scholar
  44. Hussey GF Jr (1946b) British Explosive Ordnance OP 1665, Part II—Chapter 2. US Navy Department, Bureau of Ordnance, Washington DC, p 4 (1946 version and 1970 change) Google Scholar
  45. Hussey GF Jr (1947a) US Explosive Ordnance OP 1664, Vol. 1, Part 6—Chapter 18: chemical, incendiary, and smoke bombs. US Navy Department, Bureau of Ordnance, Washington DC, pp 426–428Google Scholar
  46. Hussey GF Jr (1947b) US Explosive Ordnance OP 1664, Vol. 1, Part 6—Chapter 20. US Navy Department, Bureau of Ordnance, Washington DC, pp 426–428Google Scholar
  47. Kirchner ECh, Topa D, Simonsberger P (2011) Fulgurit vom Brennkogel, Salzburg. Mineral Arch Salzburg 14:297–300 (in German) Google Scholar
  48. Kolonin GR, Palyanova GA, Shironosova GP, Morgunov KG (1997) The effect of carbon dioxide on internal equilibria in the fluid during the formation of hydrothermal gold deposits. Geochem Int 35:40–50Google Scholar
  49. Korzhinsky MA, Tkachenko SI, Shmulovich KI, Steinberg GS (1995) Native Al and Si formation. Nature 375:544. CrossRefGoogle Scholar
  50. Kruhl JH (1993) The P-T-d development at the basement-cover boundary in the north-eastern Tauern Window (Eastern Alps): alpine continental collision. J Metamorph Geol 11:31–47CrossRefGoogle Scholar
  51. Lauterbach S, McCammon CA, van Aken P, Langenhorst F, Seifert F (2000) Mössbauer and ELNES spectroscopy of (Mg, Fe)(Si, Al)O3 perovskite: a highly oxidised component of the lower mantle. Contrib Mineral Petrol 138:17–26CrossRefGoogle Scholar
  52. Li Q, Chen D, Zheng D, Dai Y (2006) Thermodynamic study of direct aluminium extraction from aluminium sub-sulphide. Chin J Vacuum Sci Technol 26:150–154Google Scholar
  53. Lin C, Hollister LS, MacPherson GJ, Bindi L, Ma C, Andronicos CL, Steinhardt PJ (2017) Evidence of redox reaction in the quasicrystal-bearing Khatyrka meteorite reveals multi-stage formation process. Sci Rep 7:1637CrossRefGoogle Scholar
  54. Liu L-G, Basset WA (1986) Elements, oxides, and silicates: high pressure phases with implications for the earth’s interior. Oxford monographs on geology and geophysics, N. 4. Oxford University Press, New YorkGoogle Scholar
  55. Loutfy RO, Minh NQ, Hsu C, Yao NP (1981) Potential energy savings in the production of aluminum: aluminum sulfide route. Chemical metallurgy—a tribute to Carl Wagner. In: Proceedings of symposium on metallurgical thermodynamics and electrochemistry, 110th AIME annual meeting, New YorkGoogle Scholar
  56. Ma C, Lin C, Bindi L, Steinhardt PJ (2017) Hollisterite (Al3Fe), kryachkoite (Al, Cu)6(Fe, Cu), and stolperite (AlCu): three new minerals from the Khatyrka CV3 carbonaceous chondrite. Am Mineral 102:690–693CrossRefGoogle Scholar
  57. MacPherson GJ, Andronicos CL, Bindi L, Distler VV, Eddy MP, Eiler JM, Guan Y, Hollister LS, Kostin A, Kryachko V, Steinhardt WM, Yudovskaya M, Steinhardt PJ (2013) Khatyrka, a new CV3 find from the Koryak Mountains, Eastern Russia. Meteor Planet Sci 48(8):1499–1514CrossRefGoogle Scholar
  58. McCafferty E (2003) Sequence of steps in the pitting of aluminum by chloride ions. Corros Sci 45:1421–1438CrossRefGoogle Scholar
  59. McCollom TM (2016) Abiotic methane formation during experimental serpentinization of olivine. Proc Natl Acad Sciences 113(49):13965–13970. CrossRefGoogle Scholar
  60. Meier MMM, Bindi L, Heck PR, Neander AI, Spring NH, Riebe MEI, Maden C, Baur H, Steinhardt PJ, Wieler R, Busemann H (2018) Cosmic history and a candidate parent asteroid for the quasicrystal-bearing meteorite Khatyrka. Earth Planet Sci Lett 490:122–131CrossRefGoogle Scholar
  61. A/Hudson Institute of Mineralogy (current online resource as accessed in 2018).
  62. B/Hudson Institute of Mineralogy (current online resource as accessed in 2018).
  63. Mitterer C, Lenhart H, Mayrhofer PH, Kathrein M (2005) Sputtered coatings based on the Al2Au phase. In: Materials Research Society Symposium Proceedings, vol 842Google Scholar
  64. Moser M, Mayrhofer PH, Ross IM, Rainforth WM (2007) Thermal stability of sputtered intermetallic Al–Au coatings. J Vac Sci Technol A Vacuum Surf Films 25:1402–1406CrossRefGoogle Scholar
  65. Neubauer F, Hoinkes G, Sassi FP, Handler R, Höck V, Koller F, Frank W (1999) Pre-Alpine metamorphism of the Eastern Alps. Schweiz Mineral Petrog Mitt 79:41–62Google Scholar
  66. Niedermayr G (1996) Wurten/Kärnten—ein aktueller mineralogischer Situationsbericht. MINERALIEN-Welt Jg.7, Heft 6: 68–73. Bode Verlag, SalzhemmendorfGoogle Scholar
  67. Niedermayr G (2007–2011) Mineralien in der Region Obervellach. In: Demoser H (Hrsg) Chronik der Marktgemeinde Obervellach in drei Bänden. Band I—Gegenwart. Obervellach im Mölltal, pp 332–347 (in German) Google Scholar
  68. Okamoto H, Massalski TB (eds) (1987) Phase diagrams of binary gold alloys. Monograph series on alloy phase diagrams. ASM International, Metals ParkGoogle Scholar
  69. Oleinikov BV, Okrugin AV, Leskova NV (1978) Petrologic significance of native Al occurrences in basic rocks. Doklady AN SSSR 243:191–194 (in Russian) Google Scholar
  70. Othmer DF (1974) Method for producing aluminum metal directly from ore. US Patent 3,793,003Google Scholar
  71. Paar WH (2006) Montangeologie des Tauerngoldes (mit Beiträgen zur Geologie von Höck V, plus summary: Metallogenesis of the Tauern Gold). Paar/Günther/Gruber Das Buch vom Tauerngold. Verlag Anton Pustet, Salzburg, pp 41–188 (in German with English summaries) Google Scholar
  72. Paar WH, Niedermayr G (1998) Das Wurtental—Kluftmineralisationen und Edelmetallvererzungen. Mitt Österr Mineral Ges 143:425–435 (in German) Google Scholar
  73. Paar WH, Günther W, Gruber F (2006) Das Buch vom Tauerngold (mit Beiträgen von Höck V, Slupetzky H, Stocker HE; Aktualisierte, mit zahlreichen Ergänzungen, englischen Zusammenfassungen und Bildtexten versehene zweite Auflage des im Jahr 2000 erschienenen Titels« Schatzkammer Hohe Tauern. 2000 Jahre Goldbergbau »). Verlag Anton Pustet, Salzburg, p 568S (in German with English summaries) Google Scholar
  74. Peters M, Leyens C (2009) Aerospace and space materials. In: Rawlings RD (ed) Materials Science and Engineering, vol.III. UNESCO-EOLSS, Paris, pp 258–281Google Scholar
  75. Razin LV, Rudashevskii NS, Vyal’sov LN (1985a) New natural intermetallic compounds of aluminum, copper and zinc—khatyrkite CuAl2, cupalite CuAl and zinc aluminides—from hyperbasites of dunite–harzburgite formation. Zap Vses Mineral Obshch 114:90–100 (in Russian) Google Scholar
  76. Razin LV, Rudashevskii NS, Vyal’sov LN (1985b) New natural intermetallic compounds of aluminum, copper and zinc—khatyrkite CuAl2, cupalite CuAl and zinc aluminides—from hyperbasites of dunite–harzburgite formation. Abstr Chem Abs 102:223538Google Scholar
  77. Razin LV, Rudashevskii NS, Vyal’sov LN (1986) New natural intermetallic compounds of aluminum, copper and zinc—khatyrkite CuAl2, cupalite CuAl and zinc aluminides—from hyperbasites of dunite–harzburgite formation. Am Mineral 71:1278Google Scholar
  78. Rhamdhani MA, Dewan MA, Brooks GA, Monaghan BJ, Prentice L (2013) Alternative Al production methods: part 1—a review of indirect carbothermal routes. Trans Inst Min Metall Sect C Miner Process Extract Metallurgy 122(2):87–104CrossRefGoogle Scholar
  79. Rogers AF (1928) Natural history of the silica minerals. Am Mineral 13:73–92Google Scholar
  80. Rogers AF (1930) A unique occurrence of lechateliérite or silica glass. Am J Sci 19:195–292CrossRefGoogle Scholar
  81. Rogers AF (1946) Sand fulgurites with enclosed lechateliérite from Riverside County, California. J Geol 54(2):117–122CrossRefGoogle Scholar
  82. Russell A (1981) Pitfalls and pleasures in new aluminum process development. J Miner Metals Mater Soc 33(6):132–137CrossRefGoogle Scholar
  83. Schuster R, Koller F, Hoeck V, Hoinkes G, Bousquet R (2004) Explanatory notes to the map: metamorphic structure of the alps—metamorphic evolution of the Eastern Alps. Mitt Österr Mineral Ges 149:175–199Google Scholar
  84. Silaev VI, Karpov GA, Anikin LP, Filippov VN, Petrovsky VA, Sukharev AE, Simakova YS (2017) The first discovery of natural Duralumin. Doklady Earth Sci 476(Part 1):1048–1053 (Russian version in Doklady Akademii Nauk 2017, vol. 476(1): 98–103) CrossRefGoogle Scholar
  85. Skrabec QR (2017) Aluminum in America. A history. Mc Farland & Company Inc. Publishers, Jefferson, p 224Google Scholar
  86. Smye A (2011) The tectono-metamorphic evolution of the Tauern Window eclogites, Eastern Alps. PhD Thesis, Department of Earth Sciences, University of Cambridge, p 256Google Scholar
  87. Staley JT (1989) History of wrought-aluminum-alloy development. In: Vasudevan AK, Doherty RD (eds) Aluminum alloys—contemporary research and applications. Treatise on materials science and technology, vol 31. Academic Press, Boston, pp 3–31Google Scholar
  88. Stroup PT (1964) 1964 extractive metallurgy lecture—carbothermic smelting of aluminum. Trans Metall Soc AIME 230(3):356–371Google Scholar
  89. The Aluminum Association (2015) International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys.
  90. Tiryakioğlu M, Staley JT (2003) Physical metallurgy and the effect of alloying additions in aluminum alloys. In: Totten GE, MacKenzie DS (eds) Handbook of aluminum vol. I, Physical metallurgy and processes. Marcel Dekker Inc., New York, pp 81–209Google Scholar
  91. Tobisch W (2017) Abgeworfene Kampfmittel aus Flugzeugen (mit Aluminiumlegierung)—Mitteilung. EMD (Entminungsdienst), Bundesministerium für Landesverteidigung, Wien, Republik Österreich (in German) Google Scholar
  92. Tomkins AG, Mavrogenes JA (2001) Mobilization of gold as a polymetallic melt during pelite anatexis. 11th annual V.M. Goldschmidt Conference, Virginia, USA. Abstract No 3213Google Scholar
  93. Tooth B, Brugger J, Ciobanu C, Liu W (2008) Modelling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 36:815–818CrossRefGoogle Scholar
  94. Tooth B, Ciobanu CL, Green L, O’Neill B, Brugger J (2011) Bi-melt formation and gold scavenging from hydrothermal fluids: an experimental study. Geochim Cosmochim Acta 75:5423–5443CrossRefGoogle Scholar
  95. Uman MA (1987) The lightning discharge. Academic Press, San Diego, p 377Google Scholar
  96. Uman MA (1998) Atmospheric electricity, IV. Lightning. In: Lide DR (ed) CRC handbook of chemistry and physics, 79th edn. CRC Press, Boca Raton, pp 14–37Google Scholar
  97. Urban U, Mayer J, Rapp M, Wilkens M, Csanady A (1986) Studies on aperiodic crystals in Al–Mn and Al–V alloys by means of transmission electron microscopy. J Phys Colloques 47:465–474CrossRefGoogle Scholar
  98. Yershova L, Volodin V, Gromov T, Kondratiev D, Gromov G, Lamartinie S, Bibring J-P, Soufflot A (2002) Thermoelectric cooling for low temperature space environment. In: Proceedings of the 7th European Workshop on Thermoelectrics, Pamplona, SpainGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Department Chemistry and Physics of MaterialsParis Lodron University of SalzburgSalzburgAustria
  2. 2.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  3. 3.The Natural History Museum Vienna (NHM)ViennaAustria
  4. 4.Private Research-AssociatesObervellachAustria
  5. 5.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations