The discovery of the GW signal from the merging of two neutron stars (GW170817) and the detection of related electromagnetic radiations, namely a short GRB, an optical transient (kilonova) and a late afterglow emission at X-ray and radio wavelengths, opened the new era of multi-messenger astrophysics. I will briefly review the history of this discovery with an emphasis on the results of the optical/near-infrared follow-up. The lesson learned is used to get prepared for the forthcoming LIGO/Virgo runs.


Gravitational waves Stars: neutron Individual: AT2017gfo 


  1. Abadie J, Abbott BP, Abbott R (2010) TOPICAL REVIEW: predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Gravity 27:173001CrossRefGoogle Scholar
  2. Abbott BP, Abbott R, Abbott TD (2016) The rate of binary black hole mergers inferred from advanced LIGO observations surrounding GW150914. Astrophys J Lett 833:L1CrossRefGoogle Scholar
  3. Abbott BP, Abbott R, Abbott TD (2016) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13CrossRefGoogle Scholar
  4. Abbott BP, Abbott R, Abbott TD (2017) Gravitational waves and Gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848:L13CrossRefGoogle Scholar
  5. Alexander KD, Berger E, Fong W (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848:L21CrossRefGoogle Scholar
  6. Brocato E, Branchesi M, Cappellaro E (2018) GRAWITA: VLT survey telescope observations of the gravitational wave sources GW150914 and GW151226. MNRAS 474:411Google Scholar
  7. Coulter DA, Foley RJ, Kilpatrick CD et al (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358:1556CrossRefGoogle Scholar
  8. Covino S, Wiersema K, Fan YZ (2017) The unpolarized macronova associated with the gravitational wave event GW 170817. Nat Astron 1:791CrossRefGoogle Scholar
  9. Drout MR, Piro AL, Shappee BJ (2017) Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358:1570CrossRefGoogle Scholar
  10. Gossan SE, Sutton P, Stuver A (2016) Observing gravitational waves from core-collapse supernovae in the advanced detector era. Phys Rev D 93:042002CrossRefGoogle Scholar
  11. Hallinan G, Corsi A, Mooley KP et al (2017) A radio counterpart to a neutron star merger. Science 358:1579CrossRefGoogle Scholar
  12. Kasen D, Badnell NR, Barnes J (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys J 774:25CrossRefGoogle Scholar
  13. Kasen D, Metzger B, Barnes J (2017) Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551:80Google Scholar
  14. Lazzati D, López-Cámara D, Cantiello M (2017) Off-axis prompt X-ray transients from the cocoon of short Gamma-ray bursts. Astrophys J 848:L6CrossRefGoogle Scholar
  15. Margutti R, Alexander KD, Xie X (2018) The binary neutron star event LIGO/Virgo GW170817 160 days after merger: synchrotron emission across the electromagnetic spectrum. Astrophys J Lett 856:L18CrossRefGoogle Scholar
  16. Metzger BD (2017) Kilonovae. arXiv:1710.05931
  17. Mooley KP, Deller AT, Gottlieb O et al (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561:355CrossRefGoogle Scholar
  18. Perna R, Lazzati D, Giacomazzo B (2016) Short Gamma-ray bursts from the merger of two black holes. Astrophys J Lett 821:L18CrossRefGoogle Scholar
  19. Pian E, D’Avanzo P, Benetti S (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551:67Google Scholar
  20. Shappee BJ, Simon JD, Drout MR (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358:1574CrossRefGoogle Scholar
  21. Smartt SJ, Chen T-W, Jerkstrand A (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551:75Google Scholar
  22. Tanaka M, Utsumi Y, Mazzali PA et al (2017) Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. PASJ 69:102Google Scholar
  23. Troja E, Piro L, van Eerten H (2017) The X-ray counterpart to the gravitational-wave event GW170817. Nature 551:71CrossRefGoogle Scholar
  24. Valenti S, Sand DJ, Yang S (2017) The discovery of the electromagnetic counterpart of GW170817: lilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848:L24CrossRefGoogle Scholar
  25. Villar VA, Guillochon J, Berger E (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851:L21CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.INAF OAPDPaduaItaly

Personalised recommendations