Advertisement

A multipurpose X-ray fluorescence scanner developed for in situ analysis

  • F. Taccetti
  • L. Castelli
  • C. Czelusniak
  • N. Gelli
  • A. Mazzinghi
  • L. Palla
  • C. Ruberto
  • C. Censori
  • A. Lo Giudice
  • A. Re
  • D. Zafiropulos
  • F. Arneodo
  • V. Conicella
  • A. Di Giovanni
  • R. Torres
  • F. Castella
  • N. Mastrangelo
  • D. Gallegos
  • M. Tascon
  • F. Marte
  • L. GiuntiniEmail author
Article
  • 65 Downloads

Abstract

Over the time, instrument transportability has become more and more important, especially in Cultural Heritage, as often artworks cannot be moved from their site, either because of the size or due to problems with permission issues, or simply because moving them to a laboratory is physically impossible, as e.g. in the case of mural paintings. For this reason, the INFN-CHNet, the network for Cultural Heritage studies of the Italian National Institute of Nuclear Physics (INFN), has developed an XRF scanner for in situ analyses. The instrument is the result of a wide collaboration, where different units of the network have been developing the diverse parts, then merged in a single system. The XRF scanner has been designed to be a four-season and green instrument. The control/acquisition/analysis software has been fully developed by our group, using only open-source software. Other strong points of the system are easiness of use, high portability, good performances and ultra-low radiation dispersion, which allows us to use even when the public can be present. It can run both with mains or on batteries, in the latter case with a maximum runtime longer than 10 h. It has a very low cost, when compared to commercial systems with equivalent performances, and easily replaceable components, which makes it accessible for a much wider portion of the interested community. The system has been thought and designed as an open system, suitable for further development/improvements, that can result interesting for non-conventional XRF analysis. The CHNet XRF scanner has proved to be really very well suited for applications in the Cultural Heritage field, as testified by the many recent applications. This paper describes the present version of our instrument and reports on the tests performed to characterise its main features.

Graphical abstract

Keywords

XRF scanner Acquisition Transportable instrument XRF imaging Cultural heritage In situ analysis 

Notes

Acknowledgements

The authors are deeply indebted to professor Pier Andrea Mandò for the many fruitful discussions, suggestions and indications, which have allowed us to develop a better instrument in a shorter time.

References

  1. Alfeld M, de Viguerie L (2017) Recent developments in spectroscopic imaging techniques for historical paintings, a review. Spectrochim Acta B 136:81–105.  https://doi.org/10.1016/j.sab.2017.08.003 CrossRefGoogle Scholar
  2. Alfeld M, Pedroso JV, van Eikema Hommes M, Van der Snickt G, Tauber G, Blaas J, Haschke M, Erler K, Dik J, Janssens K (2013a) A mobile instrument for in situ scanning macro-XRF investigation of historical paintings. J Anal At Spectrom 28:760.  https://doi.org/10.1039/C3JA30341A CrossRefGoogle Scholar
  3. Alfeld M, Van der Snickt G, Vanmeert F, Janssens K, Dik J, Appel K, van der Loeff L, Chavannes M, Meedendorp T, Hendriks E (2013b) Scanning XRF investigation of a flower still life and its underlying composition from the collection of the Kröller-Müller Museum. Appl Phys A 111:165–175.  https://doi.org/10.1007/s00339-012-7526-x CrossRefGoogle Scholar
  4. Amptek (2018) http://amptek.com/products/70-mm2-fast-sdd/#4. Accessed Oct 2018
  5. Bogovac M, Jakšić M, Wegrzynek D, Markowicz A (2009) Digital pulse processor for ion beam microprobe tomography. Nucl Instrum Methods Phys Res A 608:157–162.  https://doi.org/10.1016/j.nima.2009.04.049 CrossRefGoogle Scholar
  6. Bussotti L, Carboncini MP, Castellucci E, Giuntini L, Mand̀ò PA (1997) Identification of pigments in a fourteenth-century miniature by combined micro-Raman and PIXE spectroscopic techniques. Stud Conserv 42:83–92.  https://doi.org/10.1179/sic.1997.42.2.83 CrossRefGoogle Scholar
  7. Charlton MF (2013) Handheld XRF for art and archaeology (Studies in Archaeological Sciences). J Archaeol Sci 40:3058–3059.  https://doi.org/10.1016/j.jas.2013.03.001 CrossRefGoogle Scholar
  8. Dal Bianco B, Russo U (2012) Basilica of San Marco (Venice, Italy/Byzantine period): nondestructive investigation on the glass Mosaic Tesserae. J Non Cryst Solids 358:368–378.  https://doi.org/10.1016/j.jnoncrysol.2011.10.006 CrossRefGoogle Scholar
  9. De Keyser N, Van der Snickt G, Van Loon A, Legrand S, Wallert AE, Janssens K (2017) Jan Davidsz de Heem (1606–1684): a technical examination of fruit and flower still-lives combining MA-XRF scanning, cross-section analysis and technical historical sources. Herit Sci 5(1):38.  https://doi.org/10.1186/s40494-017-0151-4 CrossRefGoogle Scholar
  10. Duran A, López-Montes A, Castaing J, Espejo T (2014) Analysis of a royal 15th century illuminated parchment using a portable XRF–XRD system and micro-invasive techniques. J Archaeol Sci 45:52–58.  https://doi.org/10.1016/j.jas.2014.02.011 CrossRefGoogle Scholar
  11. Elisabeth U, Fittschen A, Falkenberg G (2011) Trends in environmental science using microscopic X-ray fluorescence. Spectrochim Acta B 66:567–580.  https://doi.org/10.1016/j.sab.2011.06.006 CrossRefGoogle Scholar
  12. Hoffmann P, Flege S, Ensinger W, Wolf F, Weber C, Seeberg S, Sander J, Schultz J, Krekel C, Tagle R, Wittkopp A (2018) MA-XRF investigation of the Altenberg Retable from 1330. X-Ray Spectrom 47:215–222.  https://doi.org/10.1002/xrs.2829 CrossRefGoogle Scholar
  13. Holakooei P, Soldi S, de Lapérouse J-F, Carò F (2017) Glaze composition of the Iron Age glazed ceramics from Nimrud, Hasanlu and Borsippa preserved at The Metropolitan Museum of Art. J Archaeol Sci Rep 16:224–232.  https://doi.org/10.1016/j.jasrep.2017.09.031 CrossRefGoogle Scholar
  14. Lazic V, Vadrucci M, Fantoni R, Chiari M, Mazzinghi A, Gorghinian A (2018) Applications of laser induced breakdown spectroscopy for cultural heritage: a comparison with XRF and PIXE techniques. Spectrochim Acta B At Spectrosc 149:1–14.  https://doi.org/10.1016/j.sab.2018.07.012 CrossRefGoogle Scholar
  15. Legrand S, Ricciardi P, Nodari L, Janssens K (2018) Non-invasive analysis of a 15th century illuminated manuscript fragment: point-based vs imaging spectroscopy. Microchem J 138:162–172.  https://doi.org/10.1016/j.microc.2018.01.001 CrossRefGoogle Scholar
  16. Lemière B (2018) A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J Geochem Explor 188:350–363.  https://doi.org/10.1016/j.envpol.2016.03.055 CrossRefGoogle Scholar
  17. Macková A (2016) XRF imaging. In: Macková A, MacGregor D, Azaiez F, Nyberg J, Piasetzky E (eds) Nuclear physics for cultural heritage. Nuclear Physics Division of the European Physical Society, New York, pp 50–53.  https://doi.org/10.1071/978-2-7598-2091-7 CrossRefGoogle Scholar
  18. Mendoza A, Gravie CHP (2011) Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry. Nucl Instrum Methods Phys Res A 633:72–78.  https://doi.org/10.1016/j.nima.2010.12.178 CrossRefGoogle Scholar
  19. Migliori A, Bonanni P, Carraresi L, Grassi N, Mandò PA (2011) A novel portable XRF spectrometer with range of detection extended to low-Z elements. X-Ray Spectrom 40:107–112.  https://doi.org/10.1002/xrs.1316 CrossRefGoogle Scholar
  20. NIST (2018). https://www-s.nist.gov/srmors/. Accessed Oct 2018
  21. Profe J, Wach L, Frechen M,Ohlendorf C, Zolitschka B (2018) XRF scanning of discrete samples – A chemostratigraphic approach exemplified for loess-paleosol sequences from the Island of Susak, Croatia, Quaternary International, Available online 16 May 2018, In Press, Corrected Proof, Quaternary International.  https://doi.org/10.1016/j.quaint.2018.05.006
  22. QT (2018). https://www.qt.io/developers/. Accessed Oct 2018
  23. Re A, Zangirolami M, Angelici D, Borghi A, Costa E, Giustetto R, Gallo LM, Castelli L, Mazzinghi A, Ruberto C, Taccetti F, Lo Giudice A (2018) Towards a portable X-ray luminescence instrument for applications in the cultural heritage field. Eur Phys J Plus 133(9):362.  https://doi.org/10.1140/epjp/i2018-12222-8 CrossRefGoogle Scholar
  24. Ricciardi P, Legrand S, Bertolotti G, Janssens K (2016) Macro X-ray fluorescence (MA-XRF) scanning of illuminated manuscript fragments: potentialities and challenges. Microchem J 124:785–791.  https://doi.org/10.1016/j.microc.2015.10.020 CrossRefGoogle Scholar
  25. Robinson D, Baker MJ, Bedford C, Perry J, Wienhold M, Bernard J, Reeves D, Kotoula E, Gandy D, Miles J (2015) Methodological considerations of integrating portable digital technologies in the analysis and management of complex superimposed Californian pictographs: from spectroscopy and spectral imaging to 3-D scanning. Digit Appl Archaeol Cultural Herit 2:166–180.  https://doi.org/10.1016/j.daach.2015.06.001 CrossRefGoogle Scholar
  26. Romano FP, Caliri C, Cosentino L, Gammino S, Mascali D, Pappalardo L, Rizzo F, Scharf O (2016) Micro X-ray fluorescence imaging in a tabletop full field-X-ray fluorescence instrument and in a full field-particle induced X-ray emission end station. Anal Chem 88:9873–9880.  https://doi.org/10.1021/acs.analchem.6b02811 CrossRefGoogle Scholar
  27. Romano FP, Caliri C, Nicotra P, Di Martino S, Pappalardo L, Rizzo F, Santos HC (2017) Real-time elemental imaging of large dimension paintings with a novel mobile macro X-ray fluorescence (MA-XRF) scanning technique. J Anal At Spectrom 32:773–781.  https://doi.org/10.1039/c6ja00439c CrossRefGoogle Scholar
  28. Root (2018). https://root.cern.ch/. Accessed Oct 2018
  29. Ruberto CC, Mazzinghi A, Massi M, Castelli L, Czelusniak C, Palla L, Gelli N, Betuzzi M, Impallaria A, Brancaccio R, Peccenini E, Raffaelli M (2016) Imaging study of Raffaello’s “La Muta” by a portable XRF spectrometer. Microchem J 126:63–69.  https://doi.org/10.1071/978-2-7598-2091-710.1016/j.microc.2015.11.037 CrossRefGoogle Scholar
  30. Ryan JG, Shervais JW, Li Y, Reagand MK, Li HY, Heaton D, Godard M, Kirchenbaur M, Whattam SA, Pearce JA, Chapman T, Nelson W, Prytulak J, Shimizu K, Petronotis K (2017) the IODP Expedition 352 Scientific Team1, Application of a handheld X-ray fluorescence spectrometer for real-time, high-density quantitative analysis of drilled igneous rocks and sediments during IODP Expedition 352. Chem Geol 451:55–66.  https://doi.org/10.1016/j.chemgeo.2017.01.007 CrossRefGoogle Scholar
  31. Santos C, Caliri C, Pappalardo L, Catalano R, Orlando A, Rizzo F, Romano FP (2016) Identification of forgeries in historical enamels by combining the non-destructive scanning XRF imaging and alpha-PIXE portable techniques. Microchem J 124:241–246.  https://doi.org/10.1016/j.microc.2015.08.025 CrossRefGoogle Scholar
  32. Solé VA, Papillon E, Cotte M, Walter Ph, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B 62:63–68.  https://doi.org/10.1016/j.sab.2006.12.002 CrossRefGoogle Scholar
  33. Striova J, Ruberto C, Barucci M, Blažek J, Kuzman D, Dal Fovo A, Pampaloni E, Fontana R (2018) Spectral imaging and archival data in analyzing the Madonna of the Rabbit painting by Manet and Titian. Angew Chem Int 57:7408–7412.  https://doi.org/10.1002/anie.201800624 CrossRefGoogle Scholar
  34. Theden-Ringl F, Gadd P (2017) The application of X-ray fluorescence core scanning in multi-element analyses of a stratified archaeological cave deposit at Wee Jasper, Australia. J Archaeol Sci Rep 14:241–251.  https://doi.org/10.1016/j.jasrep.2017.05.038 CrossRefGoogle Scholar
  35. Van der Snickt G, Dubois H, Sanyova J, Legrand S, Coudray A, Glaude C, Postec M, Van Espen P, Janssens K (2017) Large-area elemental imaging reveals van eyck’s original paint layers on the Ghent Altarpiece (1432), rescoping its conservation treatment. Angew Chem Int Edit 56(17):4797–4801.  https://doi.org/10.1002/anie.201700707 CrossRefGoogle Scholar
  36. Van der Snickt G, LegrandaIn S, Van Zuien SE, Gruber G, Van der Stighelen K, Klaassen L, Oberthal E, Janssens K (2018) In situ macro X-ray fluorescence (MA-XRF) scanning as a non-invasive tool to probe for subsurface modifications in paintings by PP Rubens. Microchem J 138:238–245.  https://doi.org/10.1016/j.microc.2018.01.019 CrossRefGoogle Scholar
  37. Wegrzynek D, Markowicz A, Bamford S, Chinea-Cano E, Bogovac M (2005) Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA laboratories. Nucl Instrum Methods Phys Res B 231:176–182.  https://doi.org/10.1016/j.nimb.2005.01.053 CrossRefGoogle Scholar
  38. Wrobel P, Czyzycki M, Furman L, Kolasinski K, Lankosz M, Mrenca A, Samek L, Wegrzynek D (2012) LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer. Talanta 93:186–192.  https://doi.org/10.1016/j.talanta.2012.02.010 CrossRefGoogle Scholar
  39. Wrobel PM, Bogovac M, Sghaier H, Leani JJ, Migliori A, Padilla-Alvarez R, Czyzycki M, Osan J, Kaiser RB, Karydas AG (2016) LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste. Nucl Instrum Methods Phys Res A 833:105–109.  https://doi.org/10.1016/j.nima.2016.07.030 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2019

Authors and Affiliations

  1. 1.Istituto Nazionale di Fisica Nucleare (INFN), Sezione di FirenzeFlorenceItaly
  2. 2.Dipartimento di Fisica e AstronomiaUniversità di FirenzeFlorenceItaly
  3. 3.Istituto Nazionale di Fisica Nucleare (INFN), Sezione di TorinoTurinItaly
  4. 4.Dipartimento di FisicaUniversità di TorinoTurinItaly
  5. 5.Laboratori Nazionali di LegnaroIstituto Nazionale di Fisica NuclearePaduaItaly
  6. 6.New York University Abu DhabiAbu DhabiUnited Arab Emirates
  7. 7.Instituto de Investigaciones Sobre El Patrimonio CulturalUniversidad Nacional de San MartínSan MartínArgentina

Personalised recommendations