Rita Levi-Montalcini and her major contribution to neurobiology

  • Piergiorgio Strata


In this paper, I shall illustrate the personality of Rita Levi-Montalcini and highlight how she first emerged within a prestigious school, while under the direction of Giuseppe Levi, a most inspiring and stimulating figure. Between 1919 and 1938, he created a rich environment capable of influencing the minds of innumerable students; among them, three future Nobel Prize winners, Renato Dulbecco, Salvador Luria, and Rita Levi-Montalcini, who were companions in the same classroom. In 1938, due to the racial laws for the defence of the race, Luria and Levi-Montalcini were banned from entering the university premises. In a small working space in her bedroom—“a minuscule laboratory not unlike a convent cell”—Levi-Montalcini, supported by Levi, made a most outstanding discovery that opened a new chapter in neurobiology. Further collaborations with Viktor Hamburger and Stanley Cohen led Levi-Montalcini to the discovery of the nerve growth factor (NGF): a remarkable accomplishment which turned out to represent a milestone in the development of modern cell biology.

Graphical abstract


Embryonic induction Giuseppe Levi Hans Spemann Nerve growth factor (NGF) Neuroembryology Stanley Cohen 



I would like to thank Prof. Germana Pareti and Dr. Robin Harvey for illuminating discussions, and Maria Romanazzo (Fregi e Majuscole, Turin) not only for copy-editing, but especially for the organization of the whole architecture of text and illustrations. A special mention to Piera Levi-Montalcini for precious information and for help in collecting illustrations. This article is dedicated to my father, Gerolamo Strata, MD, who was sentenced to prison in Savona in the late 30s and then confined to Atripalda (Avellino) for criticism of the fascist regime.


  1. Angeletti PU, Levi-Montalcini R, Calissano P (1968) The nerve growth factor (NGF): chemical properties and metabolic effects. Adv Enzymol Relat Areas Mol Biol 31:51–75Google Scholar
  2. Brunso-Bechtold JK, Hamburger V (1979) Retrograde transport of nerve growth factor in chicken embryo. Proc Natl Acad Sci USA 76(3):1494–1496CrossRefGoogle Scholar
  3. Bueker ED (1948) Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat Rec 102(3):369–389CrossRefGoogle Scholar
  4. Cattaneo A (2013) Immunosympathectomy as the first phenotypic knockout with antibodies. Proc Natl Acad Sci USA 110(13):4877–4885CrossRefGoogle Scholar
  5. Chao MV (2010) A conversation with Rita Levi-Montalcini. Annu Rev Physiol 72:1–13CrossRefGoogle Scholar
  6. Cohen S (1960) Purification of a nerve-growth promoting protein from the mouse salivary gland and its neurotoxic antiserum. Proc Natl Acad Sci USA 46(3):302–331CrossRefGoogle Scholar
  7. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 237:1535–1562Google Scholar
  8. Cohen S (2008) Origins of growth factors: NGF and EGF. J Biol Chem 283:33793–33797CrossRefGoogle Scholar
  9. Cohen S, Levi-Montalcini R (1956) A nerve growth-stimulating factor isolated from snake venom. Proc Natl Acad Sci USA 42(9):571–574CrossRefGoogle Scholar
  10. Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from sarcomas 37 and 180. Proc Natl Acad Sci USA 40(10):1014–1018CrossRefGoogle Scholar
  11. Cowan WM (1981) Viktor Hamburger’s contribution to developmental neurobiology: an appreciation. In: Cowan WM (ed) Studies in developmental neurobiology: essays in honor of Viktor Hamburger. Oxford University Press, New York, pp 3–21Google Scholar
  12. Cowan WM (2001) Viktor Hambuxrger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor. Annu Rev Neurosci 24:551–600CrossRefGoogle Scholar
  13. Hamburger V (1925) Über den Einfluss des Nervensystems auf die Entwicklung der Extremitäten von Rana fusca. Wilhelm Roux Arch Entwickl Mech Org 105(1):149–201CrossRefGoogle Scholar
  14. Hamburger V (1934) The effects of wing bud extirpation on the development of the central nervous system in chick embryo. J Exp Zool 68(3):449–494CrossRefGoogle Scholar
  15. Hamburger V (1958) Regression versus peripheral control of differentiation in motor hypoplasia. Am J Anat 102(3):365–409CrossRefGoogle Scholar
  16. Hamburger V (1975) Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol 160(4):535–546CrossRefGoogle Scholar
  17. Hamburger V (1989) The journey of a neuroembryologist. Annu Rev Neurosci 12:1–12CrossRefGoogle Scholar
  18. Hamburger V (1993) The history of the discovery of the nerve growth factor. J Neurobiol 24(7):893–897CrossRefGoogle Scholar
  19. Hamburger V (1996) Viktor Hamburger. In: Squire LR (ed) The history of neuroscience in autobiography 1. Society for Neuroscience, Washington, DC, pp 222–250Google Scholar
  20. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111(3):457–501CrossRefGoogle Scholar
  21. Hamburger V, Brunso-Bechtold JK, Yip JW (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci 1:60–71CrossRefGoogle Scholar
  22. Harrison RE (1907) Observations on the living, developing nerve fiber. Anat Rec 1(5):116–118CrossRefGoogle Scholar
  23. Hogue-Angeletti R, Bradshaw RA (1971) Nerve growth factor from mouse submaxillary gland: amino acid sequence. Proc Natl Acad Sci USA 68(10):2417–2420CrossRefGoogle Scholar
  24. Hogue-Angeletti R, Mercanti D, Bradshaw RA (1973a) Amino acid sequences of mouse 2.5S nerve growth factor. I. Isolation and characterization of the soluble tryptic and chymotryptic peptides. Biochemistry 12(1):90–100CrossRefGoogle Scholar
  25. Hogue-Angeletti R, Hermodson MA, Bradshaw RA (1973b) Amino acid sequences of mouse 2.5S nerve growth factor. II. Isolation and characterization of the thermolytic and peptic peptides and the complete covalent structure. Biochemistry 12(1):100–115CrossRefGoogle Scholar
  26. Hollyday M, Hamburger V (1976) Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol 170(3):311–320CrossRefGoogle Scholar
  27. Levi G (1945) La struttura della sostanza vivente. Minerva Med 36:81–86Google Scholar
  28. Levi G, Meyer H (1941) Nouvelles recherches sur le tissu nerveux cultivé in vitro. Morphologie, croissance et relations réciproques des neurons. Arch Biol (Liège) 52:133–278Google Scholar
  29. Levi-Montalcini R (1952) Effects of mouse tumor transplantation on the nervous system. Ann NY Acad Sci 55(2):330–344CrossRefGoogle Scholar
  30. Levi-Montalcini R (1975) NGF: an uncharted route. In: Worden FG, Swazey JP, Adelman G (eds) The neurosciences: paths of discovery. MIT Press, Cambridge, pp 245–265Google Scholar
  31. Levi-Montalcini R (1982) Developmental neurobiology and the natural history of nerve growth factor. Annu Rev Neurosci 5:341–362CrossRefGoogle Scholar
  32. Levi-Montalcini R (1986) Nobel lecture: the nerve growth factor: thirty-five years later. Accessed 3 Oct 2018
  33. Levi-Montalcini R (1988) In praise of imperfection: my life and work. Basic Books, New York (It transl: Elogio dell’imperfezione. Garzanti, Milano 1987) Google Scholar
  34. Levi-Montalcini R, Booker B (1960a) Destruction of the sympathetic ganglia in mammals by an antiserum to a nerve-growth protein. Proc Natl Acad Sci USA 46(3):384–391CrossRefGoogle Scholar
  35. Levi-Montalcini R, Booker B (1960b) Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc Natl Acad Sci USA 46(3):373–384CrossRefGoogle Scholar
  36. Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116(2):321–361CrossRefGoogle Scholar
  37. Levi-Montalcini R, Hamburger V (1953) A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of viscera in the chick embyro. J Exp Zool 123(2):233–287CrossRefGoogle Scholar
  38. Levi-Montalcini R, Levi G (1942) Les conséquences de la destruction d’un territoire d’innervation périphérique sur le développement des centres nerveux correspondants dans l’embryon de Poulet. Arch Biol (Liège) 53:537–545Google Scholar
  39. Levi-Montalcini R, Levi G (1943) Recherches quantitatives sur la marche du processus de différenciation des neurons dans les ganglions spinaux de l’embryon de poulet. Arch Biol (Liège) 54:189–206Google Scholar
  40. Levi-Montalcini R, Levi G (1944) Correlazioni nello sviluppo tra varie parti del sistema nervoso. I. Conseguenze della demolizione dell’abbozzo di un arto sui centri nervosi nell’embrione di pollo. Comment (Pont Acad Sci), VIII:527–575Google Scholar
  41. Levi-Montalcini R, Meyer H, Hamburger V (1954) In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res 14(1):49–57Google Scholar
  42. Levi-Montalcini R, Revoltella R, Calissano P (1974) Microtubule proteins in the nerve growth factor mediated response. Interaction between the nerve growth factor and its target cells. Recent Prog Horm Res 30:635–669Google Scholar
  43. Lillie FR (1903) Experimental studies on the development of the organs in the embryo of the fowl (Gallus domesticus). Biol Bull 5(2):92–124CrossRefGoogle Scholar
  44. Lillie FR (1904) Experimental studies on the development of the organs in the embryo of the fowl (Gallus domesticus). II. The development of defective embryos, and the power of regeneration. Biol Bull 7(1):33–54CrossRefGoogle Scholar
  45. Lillie FR (1908) The development of the chick: an introduction to embryology. Henry Holt, New YorkGoogle Scholar
  46. Martinez Arias A, Steventon B (2018) On the nature and function of organizers. Development 145(5):dev159525CrossRefGoogle Scholar
  47. Martyn I, Kanno TY, Ruzo A, Siggia ED, Brivanlou AH (2018) Self-organization of a human organizer by combined Wnt and nodal signalling. Nature 558:132–135CrossRefGoogle Scholar
  48. Oppenheim RW (2001) In memoriam: Viktor Hamburger (1900–2001): journey of a neuroembryologist to the end of the millennium and beyond. Neuron 31(2):179–190CrossRefGoogle Scholar
  49. Pourquié O (2018) Human embryonic stem cells get organized. Nature 558:35–36CrossRefGoogle Scholar
  50. Purves D, Sanes JR (1987) The 1986 Nobel prize in physiology or medicine. Trends Neurosci 10(6):231–235CrossRefGoogle Scholar
  51. Scott J, Selby M, Urdea M, Quiroga M, Bell GI, Rutter WJ (1983) Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature 302:538–540CrossRefGoogle Scholar
  52. Shooter EM (2001) Early days of the nerve growth factor proteins. Annu Rev Neurosci 24:601–629CrossRefGoogle Scholar
  53. Shorey ML (1909) The effect of destruction of peripheral areas on the differentiation of the neuroblasts. J Exp Zool 7(1):25–63CrossRefGoogle Scholar
  54. Shorey ML (1911) A study of the differentiation of neuroblasts in artificial culture media. J Exp Zool 10(1):85–93CrossRefGoogle Scholar
  55. Spemann H, Mangold H (1924) Über Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Arch Mikrosk Anat Enwicklmech 100(3–4):599–638Google Scholar
  56. Willier BH (1957) Frank Rattray Lillie. Biographical memoirs 30. National Academy of Sciences, Washington, DC, pp 77–236Google Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of NeuroscienceUniversity of TurinTurinItaly

Personalised recommendations