Advertisement

Rendiconti Lincei. Scienze Fisiche e Naturali

, Volume 29, Issue 3, pp 623–630 | Cite as

Nitronyl nitroxide radicals at the interface: a hybrid architecture for spintronics

  • Lorenzo Poggini
  • Giuseppe Cucinotta
  • Lorenzo Sorace
  • Andrea Caneschi
  • Dante Gatteschi
  • Roberta Sessoli
  • Matteo Mannini
The Quantum World of Molecules
  • 152 Downloads

Abstract

Cross-fertilization between molecular magnetism and organic spintronics is leading to the development of concepts based on the use of molecules as active elements to influence spin-related transport processes. The research on hybrid devices, where the magnetic molecules in contact with the electrodes influence the spin and charge injection and transport, is moving its first steps but is expected to quickly expand the technological potential of molecular spintronics and quantum computing. New exciting possibilities, linked to the individual properties of these molecular units and to their interaction with novel substrates, are getting disclosed. The chemical functionalization of these molecules is the tool which allows to tune their electronic and magnetic properties and to directly create these hybrid architectures. However, the coupling of molecules with the spin transport phenomena is far from being trivial. First, the stability of molecules in the device environment must be tested and, subsequently, the organization of molecules in the desired architectures must be mastered permitting a careful control of the interactions between inorganic substrates and molecular layers. Here we summarize how this research activity can be developed in the case of one of the simplest magnetic molecules, an organic radical. We will start from an innocent surface, such as gold, to move then toward a real-device environment. We evidence how these efforts can result in a surface-specific molecular-based method to influence the spin injection and transport phenomena, paving the way for developing new devices in which a fine-tuning of magnetic features is required.

Graphical abstract

Keywords

Organic radicals Nitronyl nitroxide Nanostructured layers Molecular magnetism Molecular spintronics 

Notes

Acknowledgements

Authors acknowledge the many collaborators that have made possible the research here briefly summarized. In particular, we want to thank the groups of Dr. A. Dediu (ISMN-CNR, Bologna), Dr. S. Picozzi (SPIN-CNR, L’Aquila), Prof. G. Maruccio (University of Salento), Prof. A. Magnani (University of Siena) and the Italian MIUR that funded part of the activities we described here within the FIRB project RBAP117RWN.

References

  1. Arbuzov BA, Zobova NN (1982) Addition of aliphatic and aromatic acyl isocyanates to unsaturated compounds. Synth (Stuttg) 1982:433–450.  https://doi.org/10.1055/s-1982-29827 CrossRefGoogle Scholar
  2. Aronoff YG, Chen B, Lu G et al (1997) Stabilization of self-assembled monolayers of carboxylic acids on native oxides of metals. J Am Chem Soc 7863:1995–1998Google Scholar
  3. Atzori M, Tesi L, Morra E et al (2016) Room-temperature quantum coherence and rabi oscillations in vanadyl phthalocyanine: toward multifunctional molecular spin qubits. J Am Chem Soc 138:2154–2157.  https://doi.org/10.1021/jacs.5b13408 CrossRefGoogle Scholar
  4. Barraud C, Seneor P, Mattana R et al (2010) Unravelling the role of the interface for spin injection into organic semiconductors. Nat Phys 6:615–620.  https://doi.org/10.1038/nphys1688 CrossRefGoogle Scholar
  5. Bernien M, Wiedemann D, Hermanns CF et al (2012) Spin crossover in a vacuum-deposited submonolayer of a molecular iron(II) complex. J Phys Chem Lett 3:3431–3434.  https://doi.org/10.1021/jz3011805 CrossRefGoogle Scholar
  6. Burgess JAJ, Malavolti L, Lanzilotto V et al (2015) Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope. Nat Commun 6:8216.  https://doi.org/10.1038/ncomms9216 CrossRefGoogle Scholar
  7. Caneschi A, Gatteschi D, le Lirzin A (1994) Crystal structure and magnetic properties of a new ferrimagnetic chain containing manganese(II) and a nitronyl-nitroxide radical. Magnetic ordering in Mn(hfac)2NITR compounds. J Mater Chem 4:319–326CrossRefGoogle Scholar
  8. Caneschi A, Ferraro F, Gatteschi D et al (1995) Ferromagnetic order in the sulfur-containing nitronyl nitroxide radical, 2-(4-thiomethyl)phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, NIT(SMe)Ph. Adv Mater (Weinh, Ger) 7:476–478CrossRefGoogle Scholar
  9. Cinchetti M, Dediu VA, Hueso LE (2017) Activating the molecular spinterface. Nat Mater 16:507–515.  https://doi.org/10.1038/nmat4902 CrossRefGoogle Scholar
  10. Cini A, Mannini M, Totti F et al (2018) Mössbauer spectroscopy of a monolayer of single molecule magnets. Nat Commun 9:480.  https://doi.org/10.1038/s41467-018-02840-w CrossRefGoogle Scholar
  11. Collauto A, Mannini M, Sorace L et al (2012) A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical. J Mater Chem 22:22272CrossRefGoogle Scholar
  12. Cucinotta G, Poggini L, Pedrini A et al (2017) Tuning of a vertical spin valve with a monolayer of single molecule magnets. Adv Funct Mater 27:1703600.  https://doi.org/10.1002/adfm.201703600 CrossRefGoogle Scholar
  13. Dediu V, Hueso LE, Bergenti I et al (2008) Room-temperature spintronic effects in Alq3-based hybrid devices. Phys Rev B 78:115203.  https://doi.org/10.1103/PhysRevB.78.115203 CrossRefGoogle Scholar
  14. Dei A, Gatteschi D, Sangregorio C, Sorace L (2004) Quinonoid metal complexes: toward molecular switches. Acc Chem Res 37:827–835CrossRefGoogle Scholar
  15. Gao W, Dickinson L, Grozinger C et al (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435.  https://doi.org/10.1021/la9607621 CrossRefGoogle Scholar
  16. Gatteschi D (2001) Single molecule magnets: a new class of magnetic materials. J Alloys Compd 317:8–12CrossRefGoogle Scholar
  17. Gatteschi D, Sessoli R, Villain J (2006) Molecular nanomagnets. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  18. Gorini L, Caneschi A, Menichetti S (2006) TPAP/NMO system as a novel method for the synthesis of nitronyl nitroxide radicals. Synlett 2006:948–950.  https://doi.org/10.1055/s-2006-939045 CrossRefGoogle Scholar
  19. Graziosi P, Prezioso M, Gambardella A et al (2013) Conditions for the growth of smooth La 0.7 Sr 0.3 MnO 3 thin films by pulsed electron ablation. Thin Solid Films 534:83–89.  https://doi.org/10.1016/j.tsf.2013.02.008 CrossRefGoogle Scholar
  20. Halcrow MA (ed) (2013) Spin-crossover materials. Wiley, OxfordGoogle Scholar
  21. Hofmann A, Salman Z, Mannini M et al (2012) Depth-dependent spin dynamics in thin films of TbPc 2 nanomagnets explored by low-energy implanted muons. ACS Nano 6:8390–8396.  https://doi.org/10.1021/nn3031673 CrossRefGoogle Scholar
  22. Hueso LEE, Bergenti I, Riminucci A et al (2007) Multipurpose magnetic organic hybrid devices. Adv Mater 19:2639–2642.  https://doi.org/10.1002/adma.200602748 CrossRefGoogle Scholar
  23. Jin Q, Rodriguez JA, Li CZ et al (1999) Self-assembly of aromatic thiols on Au (111). Surf Sci 425:101–111.  https://doi.org/10.1016/S0039-6028(99)00195-8 CrossRefGoogle Scholar
  24. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408:541–548.  https://doi.org/10.1038/35046000 CrossRefGoogle Scholar
  25. Kahle S, Deng Z, Malinowski N et al (2012) The quantum magnetism of individual manganese-12-acetate molecular magnets anchored at surfaces. Nano Lett 12:518–521.  https://doi.org/10.1021/nl204141z CrossRefGoogle Scholar
  26. Lehmann J, Gaita-Arino A, Coronado E, Loss D (2009) Quantum computing with molecular spin systems. J Mater Chem 19:1672–1677.  https://doi.org/10.1039/b810634g CrossRefGoogle Scholar
  27. Malavolti L, Lanzilotto V, Ninova S et al (2015) Magnetic bistability in a submonolayer of sublimated Fe 4 single-molecule magnets. Nano Lett 15:535–541.  https://doi.org/10.1021/nl503925h CrossRefGoogle Scholar
  28. Mannini M, Messina P, Sorace L et al (2007a) Addressing individual paramagnetic molecules through ESN–STM. Inorganica Chim Acta 360:3837–3842.  https://doi.org/10.1016/j.ica.2007.02.005 CrossRefGoogle Scholar
  29. Mannini M, Sorace L, Gorini L et al (2007b) Self-assembled organic radicals on Au(111) surfaces: a combined ToF–SIMS, STM, and ESR study. Langmuir 23:2389–2397.  https://doi.org/10.1021/la062028f CrossRefGoogle Scholar
  30. Mannini M, Pineider F, Sainctavit P et al (2009a) Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat Mater 8:194–197.  https://doi.org/10.1038/nmat2374 CrossRefGoogle Scholar
  31. Mannini M, Pineider F, Sainctavit P et al (2009b) X-Ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv Mater 21:167–171.  https://doi.org/10.1002/adma.200801883 CrossRefGoogle Scholar
  32. Mas-Torrent M, Crivillers N, Mugnaini V et al (2009) Organic radicals on surfaces: towards molecular spintronics. J Mater Chem 19:1691–1695.  https://doi.org/10.1039/B809875A CrossRefGoogle Scholar
  33. Osiecki JH, Ullman EF (1968) Studies of free radicals. I. alpha-nitronyl nitroxides, a new class of stable radicals. J Am Chem Soc 2300:1078–1079.  https://doi.org/10.1021/ja01006a053 CrossRefGoogle Scholar
  34. Pavliček N, Mistry A, Majzik Z et al (2017) Synthesis and characterization of triangulene. Nat Nanotechnol 12:308–311.  https://doi.org/10.1038/nnano.2016.305 CrossRefGoogle Scholar
  35. Poggini L, Ninova S, Graziosi P et al (2014) A combined ion scattering, photoemission, and DFT investigation on the termination layer of a La 0.7 Sr 0.3 MnO 3 spin injecting electrode. J Phys Chem C 118:13631–13637.  https://doi.org/10.1021/jp5026619 CrossRefGoogle Scholar
  36. Poggini L, Cucinotta G, Pradipto A-MA-M et al (2016) An organic spin valve embedding a self-assembled monolayer of organic radicals. Adv Mater Interfaces 3:1500855.  https://doi.org/10.1002/admi.201500855 CrossRefGoogle Scholar
  37. Poneti G, Poggini L, Mannini M et al (2015) Thermal and optical control of electronic states in a single layer of switchable paramagnetic molecules. Chem Sci 6:2268–2274.  https://doi.org/10.1039/C5SC00163C CrossRefGoogle Scholar
  38. Rajaraman G, Caneschi A, Gatteschi D, Totti F (2010) A DFT exploration of the organization of thiols on Au(111): a route to self-assembled monolayer of magnetic molecules. J Mater Chem 20:10747.  https://doi.org/10.1039/c0jm02481c CrossRefGoogle Scholar
  39. Ruthstein S, Artzi R, Goldfarb D, Naaman R (2005) EPR studies on the organization of self-assembled spin-labeled organic monolayers adsorbed on GaAs. Phys Chem Chem Phys 7:524.  https://doi.org/10.1039/b415053h CrossRefGoogle Scholar
  40. Sanvito S (2010) Molecular spintronics: the rise of spinterface science. Nat Phys 6:562–564.  https://doi.org/10.1038/nphys1714 CrossRefGoogle Scholar
  41. Sanvito S, Barnas J, van der Zant HSJ et al (2011) Molecular spintronics. Chem Soc Rev 40:3336.  https://doi.org/10.1039/c1cs15047b CrossRefGoogle Scholar
  42. Sato O, Tao J, Zhang Y-Z (2007) Control of magnetic properties through external stimuli. Angew Chem Int Ed 46:2152–2187.  https://doi.org/10.1002/anie.200602205 CrossRefGoogle Scholar
  43. Sessoli R, Boulon M-E, Caneschi A et al (2015) Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-rays. Nat Phys 11:69–74.  https://doi.org/10.1038/nphys3152 CrossRefGoogle Scholar
  44. Smith CD, Bartley JP, Bottle SE (2002) Electrospray mass spectrometry of stable iminyl nitroxide and nitronyl nitroxide free radicals. J Mass Spectrom 37:897–902.  https://doi.org/10.1002/jms.339 CrossRefGoogle Scholar
  45. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554.  https://doi.org/10.1021/cr9502357 CrossRefGoogle Scholar

Copyright information

© Accademia Nazionale dei Lincei 2018

Authors and Affiliations

  1. 1.Department of Chemistry “U. Schiff”Università degli Studi di Firenze & INSTM RU of FirenzeSesto FiorentinoItaly
  2. 2.Department of Industrial EngineeringUniversità degli Studi di Firenze & INSTM RU of FirenzeFlorenceItaly

Personalised recommendations