Transactions of Tianjin University

, Volume 25, Issue 5, pp 559–566 | Cite as

Dissipative Particle Dynamics Simulations of the Self-assembly Mechanisms of Fluorinated Ordered Mesoporous Carbon in the Aqueous Phase

  • Na Sun
  • Minhua Zhang
  • Xiuqin Dong
  • Lingtao WangEmail author
Research Article


To clarify the preparation mechanisms of fluorinated ordered mesoporous carbon materials (FOMCs), the dissipative particle dynamics method was used to simulate the self-assembly process of the amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer Pluronic F127 in the aqueous system. The self-assembly mechanisms in aqueous phase and the formation mechanisms of micropores and mesopores were investigated. It was found that the mesoporous structure of the FOMCs was formed by the hydrophobic segments of F127, while the pore wall was formed by both the hydrophilic segments and the carbon precursor in the system. The microporous structure on the pore wall was constructed by the carbon source in the hydrophilic segments’ spaces after the template was removed. Our findings could provide understanding and knowledge for the synthesis of mesoporous carbon by the self-assembly method on the mesoscopic scale.


Mesoporous carbon Dissipative particle dynamics Self-assembly Mesopore Micropore 



This study was supported by the National Natural Science Foundation of China (No. 21104035).

Supplementary material

12209_2019_217_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1749 kb)


  1. 1.
    Stein A, Wang ZY, Fierke MA (2009) Functionalization of porous carbon materials with designed pore architecture. Adv Mater 21(3):265–293CrossRefGoogle Scholar
  2. 2.
    Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Edit 47(20):3696–3717CrossRefGoogle Scholar
  3. 3.
    Zhao X, Wang A, Yan J et al (2010) Synthesis and electrochemical performance of heteroatom-incorporated ordered mesoporous carbons. Chem Mater 22(19):5463–5473CrossRefGoogle Scholar
  4. 4.
    Xia Y, Yang Z, Mokaya R (2004) Mesostructured hollow spheres of graphitic N-doped carbon nanocast from spherical mesoporous silica. Phys Chem B 108(50):19293–19298CrossRefGoogle Scholar
  5. 5.
    Xia Y, Mokaya R (2005) Generalized and facile synthesis approach to N-doped highly graphitic mesoporous carbon materials. Chem Mater 17(6):1553–1560CrossRefGoogle Scholar
  6. 6.
    Fuertes AB, Centeno TA (2005) Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J Mater Chem 15(10):1079–1083CrossRefGoogle Scholar
  7. 7.
    Li W, Chen D, Li Z et al (2007) Nitrogen-containing carbon spheres with very large uniform mesopores: the superior electrode materials for EDLC in organic electrolyte. Carbon 45(9):1757–1763CrossRefGoogle Scholar
  8. 8.
    Fulvio PF, Mayes RT, Bauer JC (2012) “One-pot” synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catal Today 186(1):12–19CrossRefGoogle Scholar
  9. 9.
    Shin Y, Fryxell G, Um W et al (2007) Sulfur-functionalized mesoporous carbon. Adv Funct Mater 17(15):2897–2901CrossRefGoogle Scholar
  10. 10.
    Yu T, Deng Y, Wang L et al (2007) Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situcarbothermal reduction. Adv Mater 19(17):2301–2306CrossRefGoogle Scholar
  11. 11.
    Liu R, Ren Y, Shi Y et al (2008) Controlled synthesis of ordered mesoporous C–TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chem Mater 20(3):1140–1146CrossRefGoogle Scholar
  12. 12.
    Zhai Y, Dou Y, Liu X et al (2009) One-pot synthesis of magnetically separable ordered mesoporous carbon. J Mater Chem 19(20):3292–3300CrossRefGoogle Scholar
  13. 13.
    Yao J, Li L, Song H et al (2009) Synthesis of magnetically separable ordered mesoporous carbons from F127/[Ni(H2O)6](NO3)2/resorcinol-formaldehyde composites. Carbon 47(2):436–444CrossRefGoogle Scholar
  14. 14.
    Dou J, Zeng HC (2012) Preparation of Mo-embedded mesoporous carbon microspheres for Friedel–Crafts alkylation. J Phys Chem C 116(14):7767–7775CrossRefGoogle Scholar
  15. 15.
    Chen G, Zhang J, Yang S (2008) Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. Electrochem Commun 10(1):7–11CrossRefGoogle Scholar
  16. 16.
    Kim BS, Shin S, Shin SJ et al (2011) Control of superhydrophilicity/superhydrophobicity using silicon nanowires via electroless etching method and fluorine carbon coatings. Langmuir 27(16):10148–10156CrossRefGoogle Scholar
  17. 17.
    Fulvio PF, Brown SS, Adcock J et al (2011) Low-temperature fluorination of soft-templated mesoporous carbons for a high-power lithium/carbon fluoride battery. Chem Mater 23(20):4420–4427CrossRefGoogle Scholar
  18. 18.
    Hu Q, Pang J, Jiang N et al (2005) Direct synthesis of palladium-containing mesoporous carbon. Microporous Mesoporous Mater 81(1–3):149–154CrossRefGoogle Scholar
  19. 19.
    Li J, Gu J, Li H et al (2010) Synthesis of highly ordered Fe-containing mesoporous carbon materials using soft templating routes. Microporous Mesoporous Mater 128(1–3):144–149CrossRefGoogle Scholar
  20. 20.
    Wan Y, Qian X, Jia N et al (2008) Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon. Chem Mater 20(3):1012–1018CrossRefGoogle Scholar
  21. 21.
    Huang Y, Cai H, Feng D et al (2008) One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities. Chem Commun 23:2641–2643MathSciNetCrossRefGoogle Scholar
  22. 22.
    Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160CrossRefGoogle Scholar
  23. 23.
    Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulations of hard-sphere suspensions under steady shear. Europhys Lett 21(3):363–368CrossRefGoogle Scholar
  24. 24.
    Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435CrossRefGoogle Scholar
  25. 25.
    Moeendarbary E, Ng TY, Zangeneh M (2009) Dissipative particle dynamics: introduction, methodology and complex fluid applications: a review. Int J Appl Mech 1(4):737–763CrossRefGoogle Scholar
  26. 26.
    Saeki S, Kuwahara N, Nakata M et al (1976) Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 17(8):685–689CrossRefGoogle Scholar
  27. 27.
    Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81(2):725–736CrossRefGoogle Scholar
  28. 28.
    van Vlimmeren BAC, Maurits M, Zvelindovsky AV et al (1999) Simulation of 3D mesoscale structure formation in concentrated aqueous solution of the triblock polymer surfactants (ethylene oxide)13(propylene oxide)30(ethylene oxide)13 and (propylene oxide)19(ethylene oxide)33(propylene oxide)19. Application of dynamic mean-field density functional theory. Macromolecules 32(3):646–656CrossRefGoogle Scholar
  29. 29.
    Guo SL, Hou TJ, Xu XJ (2002) Simulation of the phase behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/water/p-xylene system using MesoDyn. J Phys Chem B 106(43):11397–11403CrossRefGoogle Scholar
  30. 30.
    Dong XQ, Zhao XS, Wang LT et al (2016) One-step synthesis of hydrophobic fluorinated ordered mesoporous carbon materials. RSC Adv 6(54):48870–48874CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Na Sun
    • 1
    • 2
  • Minhua Zhang
    • 1
    • 2
  • Xiuqin Dong
    • 1
    • 2
  • Lingtao Wang
    • 1
    • 2
    Email author
  1. 1.R&D Center of Petrochemical TechnologyTianjin UniversityTianjinChina
  2. 2.Key Laboratory for Green Chemical Technology of Ministry of EducationTianjin UniversityTianjinChina

Personalised recommendations