Transactions of Tianjin University

, Volume 25, Issue 5, pp 504–516 | Cite as

Optimization of Co-precipitation Condition for Preparing Molybdenum-Based Sulfur-Resistant Methanation Catalysts

  • Jiahui Zhang
  • Xiaoshan Zhang
  • Baowei Wang
  • Zhenhua LiEmail author
  • Xinbin Ma
Research Article


In this study, the effects of ZrO2 carrier precursors, MoO3 loading, and washing treatment on the catalytic performance of MoO3/ZrO2 toward sulfur-resistant methanation were investigated. All the catalysts were prepared by co-precipitation method and further characterized by N2 adsorption–desorption, H2-temperature-programmed reduction, X-ray diffraction, Raman spectroscopy and transmission electron microscopy. The prepared MoO3/ZrO2 catalysts were tested in a continuous-flow pressurized fixed bed reactor for CO methanation. The results revealed that the carrier precursors, MoO3 loading, and washing treatment affected not only the crystalline phase of Mo species but also the grain size of ZrO2 carrier and consequently influenced the MoO3/ZrO2 activity toward sulfur-resistant methanation. The 25 wt% MoO3/ZrO2 catalyst prepared using Zr(NO3)4·5H2O as the precursor and treated by water washing displayed the best activity for sulfur-resistant methanation due to its greater number of octahedral Mo species and smaller ZrO2 grain size.


Sulfur-resistant methanation Co-precipitation Molybdenum ZrO2 



This study was supported by the National Natural Science Foundation of China (No. 21576203).


  1. 1.
    Li Z, Liu J, Wang H et al (2013) Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas. J Mol Catal A Chem 378:99–108CrossRefGoogle Scholar
  2. 2.
    Liu J, Wang E, Lv J et al (2013) Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Process Technol 110:249–257CrossRefGoogle Scholar
  3. 3.
    Shi XR, Jiao H, Wang J et al (2009) CO hydrogenation reaction on sulfided molybdenum catalysts. J Mol Catal A Chem 312(1–2):7–17CrossRefGoogle Scholar
  4. 4.
    Fu Y, Lu W, Huang Z (1989) Study of methanation and O2 chemisorption with several supported sulfided molybdenum catalysts. J Univ Sci Technol China 19(2):171–177 (in Chinese) Google Scholar
  5. 5.
    Li Z, Tian Y, He J et al (2014) High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. J Energy Chem 23(5):625–632CrossRefGoogle Scholar
  6. 6.
    Xie H, Lu J, Shekhar M et al (2013) Synthesis of Na-stabilized nonporous t-ZrO2 supports and Pt/t-ZrO2 catalysts and application to water-gas-shift reaction. ACS Catal 3(1):61–73CrossRefGoogle Scholar
  7. 7.
    Nabgan W, Abdullah TAT, Mat R et al (2016) Influence of Ni to Co ratio supported on ZrO2 catalysts in phenol steam reforming for hydrogen production. Int J Hydrog Energy 41(48):22922–22931CrossRefGoogle Scholar
  8. 8.
    Samson K, Śliwa M, Socha RP et al (2014) Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal 4(10):3730–3741CrossRefGoogle Scholar
  9. 9.
    Xu BQ, Wei JM, Yu YT et al (2003) Carbon dioxide reforming of methane over nanocomposite Ni/ZrO2 catalysts. Top Catal 22(1–2):77–85CrossRefGoogle Scholar
  10. 10.
    Souza PMD, Rabelo-Neto RC, Borges LEP et al (2015) Effect of zirconia morphology on hydrodeoxygenation of phenol over Pd/ZrO2. ACS Catal 5(12):7385–7398CrossRefGoogle Scholar
  11. 11.
    Mortensen PM, Carvalho HWPD, Grunwaldt JD et al (2015) Activity and stability of Mo2C/ZrO2 as catalyst for hydrodeoxygenation of mixtures of phenol and 1-octanol. J Catal 328:208–215CrossRefGoogle Scholar
  12. 12.
    Wang Y, Gao W, Zheng Y et al (2014) The influence of Zn/Zr ratios on CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. Adv Mater Res 941–944:425–429Google Scholar
  13. 13.
    Guo X, Mao D, Lu G et al (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A Chem 345:60–68CrossRefGoogle Scholar
  14. 14.
    Jin G, Lu G, Guo Y et al (2004) Direct epoxidation of propylene with molecular oxygen over Ag–MoO3/ZrO2 catalyst. Catal Today 93–95:173–182CrossRefGoogle Scholar
  15. 15.
    Chen A, Zhou Y, Miao S et al (2016) Assembly of monoclinic ZrO2 nanorods: formation mechanism and crystal phase control. CrystEngComm 18:580–587CrossRefGoogle Scholar
  16. 16.
    Jung KT, Bell AT (2002) Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper. Catal Lett 80(1–2):63–68CrossRefGoogle Scholar
  17. 17.
    Ma ZY, Yang C, Wei W et al (2005) Surface properties and CO adsorption on zirconia polymorphs. J Mol Catal A Chem 227(1–2):119–124CrossRefGoogle Scholar
  18. 18.
    Yamaguchi T (1994) Application of ZrO2 as a catalyst and a catalyst support. Catal Today 20(2):199–217CrossRefGoogle Scholar
  19. 19.
    Samantaray S, Hota G, Mishra BG (2011) Physicochemical characterization and catalytic applications of MoO–ZrO composite oxides towards one pot synthesis of amidoalkyl naphthols. Catal Commun 12(13):1255–1259CrossRefGoogle Scholar
  20. 20.
    Liu Q, Gu F, Zhong Z et al (2016) Anti-sintering ZrO2-modified Ni/α-Al2O3 catalyst for CO methanation. RSC Adv 6:20979–20986CrossRefGoogle Scholar
  21. 21.
    Guo C, Wu Y, Qin H et al (2014) CO methanation over ZrO2/Al2O3 supported Ni catalysts: a comprehensive study. Fuel Process Technol 124:61–69CrossRefGoogle Scholar
  22. 22.
    Zheng WT, Sun KQ, Liu HM et al (2012) Nanocomposite Ni/ZrO2: highly active and stable catalyst for H2 production via cyclic stepwise methane reforming reactions. Int J Hydrog Energy 37(16):11735–11747CrossRefGoogle Scholar
  23. 23.
    Zhao A, Ying W, Zhang H et al (2012) Ni–Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal Commun 17:34–38CrossRefGoogle Scholar
  24. 24.
    Zhang J, Bai Y, Zhang Q et al (2014) Low-temperature methanation of syngas in slurry phase over Zr-doped Ni/γ-Al2O3 catalysts prepared using different methods. Fuel 132:211–218CrossRefGoogle Scholar
  25. 25.
    Thomas R, Van Oers EM, De Beer VHJ et al (1983) Characterization of silica-supported molybdenum oxide and tungsten oxide. Reducibility of the oxidic state versus hydrodesulfurization activity of the sulfided state. J Catal 84:275–287CrossRefGoogle Scholar
  26. 26.
    Arnoldy P, De Jonge JCM, Moulijn JA (1985) Temperature-programed reduction of molybdenum(VI) oxide and molybdenum(IV) oxide. J Phys Chem 89:4517–4526CrossRefGoogle Scholar
  27. 27.
    Scheffer B, De Jonge JCM, Arnoldy P et al (1984) Temperature programmed sulfiding of CoO/MoO3/γ-Al2O3 catalysts. Bull Soc Chim Belg 93(8–9):751–762Google Scholar
  28. 28.
    Bhaskar T, Reddy KR, Kumar CP (2001) Characterization and reactivity of molybdenum oxide catalysts supported on zirconia. Appl Catal A Gen 211:189–201CrossRefGoogle Scholar
  29. 29.
    López Cordero R, López Agudo A (2000) Effect of water extraction on the surface properties of Mo/Al2O3 and NiMo/Al2O3 hydrotreating catalysts. Appl Catal A Gen 202(1):23–35CrossRefGoogle Scholar
  30. 30.
    Zhou TN, Yin HL, Liu YQ et al (2010) Effect of phosphorus content on the active phase structure of NiMoP/Al2O3 catalyst. J Fuel Chem Technol 38(1):69–74CrossRefGoogle Scholar
  31. 31.
    Teimouri A, Najari B, Chermahini AN et al (2014) Characterization and catalytic properties of molybdenum oxide catalysts supported on ZrO2–γ-Al2O3 for ammoxidation of toluene. RSC Adv 4:37679–37686CrossRefGoogle Scholar
  32. 32.
    Badoga S, Mouli KC, Soni KK et al (2012) Beneficial influence of EDTA on the structure and catalytic properties of sulfided NiMo/SBA-15 catalysts for hydrotreating of light gas oil. Appl Catal B Environ 125:67–84CrossRefGoogle Scholar
  33. 33.
    Chen K, Xie S, Iglesia E et al (2000) Structure and properties of zirconia-supported molybdenum oxide catalysts for oxidative dehydrogenation of propane. J Catal 189(2):421–430CrossRefGoogle Scholar
  34. 34.
    Chuah GK (1999) An investigation into the preparation of high surface area zirconia. Catal Today 49(1–3):131–139CrossRefGoogle Scholar
  35. 35.
    Li W, Huang H, Li H et al (2008) Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation. Langmuir 24(15):8358–8366CrossRefGoogle Scholar
  36. 36.
    Lamine N, Benadda A, Djadoun A et al (2016) Effect of preparation protocol on the surface acidity of molybdenum catalysts supported on titania and zirconia. J Mol Catal A Chem 425:157–165CrossRefGoogle Scholar
  37. 37.
    Xie S, Chen K, Bell AT et al (2005) Structural characterization of molybdenum oxide supported on zirconia. J Phys Chem B 104(43):10059–10068CrossRefGoogle Scholar
  38. 38.
    Plazenet G, Payen E, Lynch J et al (2002) Study by EXAFS, Raman, and NMR spectroscopies of the genesis of oxidic precursors of zeolite-supported HDS catalysts. J Phys Chem B 106(28):7013–7028CrossRefGoogle Scholar
  39. 39.
    Dufresne P, Payen E, Grimblot J et al (1981) Study of nickel-molybdenum-γ-aluminum oxide catalysts by X-ray photoelectron and Raman spectroscopy. Comparison with cobalt-molybdenum-γ-aluminum oxide catalysts. J Phys Chem 85:2344–2351CrossRefGoogle Scholar
  40. 40.
    Wang B, Ding G, Shang Y et al (2012) Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3. Appl Catal A Gen 431–432:144–150CrossRefGoogle Scholar
  41. 41.
    Hu H, Wang W, Liu Z et al (2018) Sulfur-resistant CO methanation to CH4 over MoS2/ZrO2 catalysts: support size effect on morphology and performance of Mo species. Catal Lett 148(8):2585–2595CrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jiahui Zhang
    • 1
    • 2
  • Xiaoshan Zhang
    • 1
    • 2
  • Baowei Wang
    • 1
    • 2
  • Zhenhua Li
    • 1
    • 2
    Email author
  • Xinbin Ma
    • 1
    • 2
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina

Personalised recommendations