Transactions of Tianjin University

, Volume 25, Issue 5, pp 540–548 | Cite as

Calculation of the Phase Equilibrium of CO2–Hydrocarbon Binary Mixtures by PR-BM EOS and PR EOS

  • Chuanyan Li
  • Yahui Gao
  • Shuqian XiaEmail author
  • Qiaoyan Shang
  • Peisheng Ma
Research Article


The phase equilibrium data of CO2–hydrocarbon binary mixtures are important for the design and operation of CO2 flooding, coal liquefaction, and supercritical extraction processes. Numerous pieces of binary phase equilibrium data have been obtained. Thus, models for the accurate calculation of binary and multicomponent mixtures must be developed on the basis of existing data. In this work, 3578 vapor–liquid phase equilibrium data points for 10 CO2–hydrocarbon binary mixtures, including CO2–butane, CO2–pentane, CO2–isopentane, CO2–hexane, CO2–benzene, CO2–heptane, CO2–octane, CO2–nonane, CO2–decane, and CO2–undecane, were collected. The PR and PR-BM equations of state (EOS) in combination with relevant mixing rules were used to calculate the phase equilibrium data of the CO2–hydrocarbon binary mixtures. The binary interaction parameter kij in the PR EOS was temperature independent, whereas parameters in the PR-BM EOS were functions of temperature. Thus, the phase equilibrium data and other thermodynamic properties of the binary and multicomponent mixtures at different temperatures and pressures can be calculated by using the parameters obtained in this work. The PR-BM EOS performed better than the PR EOS, and the average absolute deviations over the temperature range of 255.98–408.15 K calculated by the PR EOS and PR-BM EOS were less than 5.74% and 3.36%, respectively. The results calculated by the two EOS were compared with those calculated by other models, such as PPR78, PR + LCVM + UNIFAC, KIE + PR EOS + HV, and PSRK. The phase equilibrium data of CO2–butane–decane, CO2–hexane–decane, and CO2–octane–decane ternary mixtures were calculated by the two EOS. The average overall deviations for the CO2 mole fractions calculated by the two EOS were less than 7.66%.


Phase equilibrium Equation of state Mixing rule Hydrocarbon CO2 



This study was supported by the National Key Research and Development Program of China (2016YFB0600804‒3) and Shandong Natural Science Foundation (ZR2017BB076).


  1. 1.
    Gao W Jr, Robinson RL, Gasem KAM (2003) Alternate equation of state combining rules and interaction parameter generalizations for asymmetric mixtures. Fluid Phase Equilib 213(1–2):19–37Google Scholar
  2. 2.
    Rogers JD, Grigg RB (2001) A literature analysis of the WAG injectivity abnormalities in the CO2 process. SPE Reserv Eval Eng 4(5):73830Google Scholar
  3. 3.
    Valderrama JO (2003) The state of the cubic equations of state. Ind Eng Chem Res 42(8):1603–1618Google Scholar
  4. 4.
    Wei YS, Sadus RJ (2000) Equations of state for the calculation of fluid-phase equilibria. AIChE J 46(1):169–196Google Scholar
  5. 5.
    Peng DY, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15(1):59–64Google Scholar
  6. 6.
    Soave G (1972) Equilibrium constants from a modified Redlich–Kwong equation of state. Chem Eng Sci 27(6):1197–1203Google Scholar
  7. 7.
    Le Guennec Y, Lasala S, Privat R et al (2016) A consistency test for a-functions of cubic equations of state. Fluid Phase Equilib 427:513–538Google Scholar
  8. 8.
    Le Guennec Y, Privat R, Jaubert JN (2016) Development of the translated-consistent tc-PR and tc-RK cubic equations of state for a safe and accurate prediction of volumetric, energetic and saturation properties of pure compounds in the sub and super-critical domains. Fluid Phase Equilib 429:301–313Google Scholar
  9. 9.
    Jaubert JN, Privat R, Le Guennec Y et al (2016) Note on the properties altered by application of a Péneloux-type volume translation to an equation of state. Fluid Phase Equilib 419:88–95Google Scholar
  10. 10.
    Privat R, Jaubert JN, Le Guennec Y (2016) Incorporation of a volume translation in an equation of state for fluid mixtures: Which combining rule? Which effect on properties of mixing? Fluid Phase Equilib 427:414–420Google Scholar
  11. 11.
    Li H, Yan J (2009) Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Appl Energy 86(6):826–836Google Scholar
  12. 12.
    Sima S, Secuianu C, Feroiu V (2018) Phase equilibria of CO2 + 1,2-dimethoxyethane at high-pressures. Fluid Phase Equilib 458:47–57Google Scholar
  13. 13.
    Mathias PM, Klotz HC, Prausnitz JM (1991) Equation-of-state mixing rules for multicomponent mixtures: the problem of invariance. Fluid Phase Equilib 67:31–34Google Scholar
  14. 14.
    Boston JF, Mathias PM (1980) Phase equilibria in a third-generation process simulator. In: Knapp H (ed) Phase equilibria and fluid properties in the chemical industry: proceedings part I manuscripts of poster papers, part II manuscripts of invited papers. Apparatewesen, Frankfurt, pp 823–848Google Scholar
  15. 15.
    Brown TS, Niesen VG, Sloan ED et al (1989) Vapor–liquid equilibria for the binary systems of nitrogen, carbon dioxide, and n-butane at temperatures from 220 to 344 K. Fluid Phase Equilib 53:7–14Google Scholar
  16. 16.
    Pozo de Fernandez ME, Zollweg JA, Streett WB (1989) Vapor–liquid equilibrium in the binary system carbon dioxide + n-butane. J Chem Eng Data 34(3):324–328Google Scholar
  17. 17.
    Kalra H, Krishnan TR, Robinson DB (1976) Equilibrium-phase properties of carbon dioxide + n-butane and nitrogen + hydrogen sulfide systems at subambient temperatures. J Chem Eng Data 21(2):222–225Google Scholar
  18. 18.
    Olds RH, Reamer HH, Sage BH et al (1949) Phase equilibria in hydrocarbon systems: the n-butane–carbon dioxide system. Ind Eng Chem 41(3):475–482Google Scholar
  19. 19.
    Niesen VG (1989) (Vapor + liquid) equilibria and coexisting densities of (carbon dioxide + n-butane) at 311 to 395 K. J Chem Thermodyn 21(9):915–923Google Scholar
  20. 20.
    Hsu JJC, Nagarajan N, Robinson RL Jr. (1985) Equilibrium phase compositions, phase densities and interfacial tensions for CO2 + hydrocarbon systems. 1. CO2 + n-butane. J Chem Eng Data 30(4):485–491Google Scholar
  21. 21.
    Weber LA (1989) Simple apparatus for vapor–liquid equilibrium measurements with data for the binary systems of carbon dioxide with n-butane and isobutane. J Chem Eng Data 34(2):171–175MathSciNetGoogle Scholar
  22. 22.
    Shibata SK, Sandler SI (1989) High-pressure vapor–liquid equilibria involving mixtures of nitrogen, carbon dioxide, and n-butane. J Chem Eng Data 34(3):291–297Google Scholar
  23. 23.
    Leu AD, Robinson DB (1987) Equilibriuim phase properties of the n-butane–carbon dioxide and isobutane–carbon dioxide binary system. J Chem Eng Data 32(4):444–447Google Scholar
  24. 24.
    Cheng H, Pozo de Fernández ME, Zollweg JA et al (1989) Vapor–liquid equilibrium in the system carbon dioxide + n-pentane from 252 to 458 K at pressures to 10 MPa. J Chem Eng Data 34(3):319–323Google Scholar
  25. 25.
    Besserer GJ, Robinson DB (1973) Equilibrium-phase properties of n-pentane-carbon dioxide system. J Chem Eng Data 18(4):416–419Google Scholar
  26. 26.
    Tochigi K, Hasegawa K, Asano N et al (1998) Vapor–liquid equilibria for the carbon dioxide plus pentane and carbon dioxide plus toluene systems. J Chem Eng Data 43(6):954–956Google Scholar
  27. 27.
    Leu AD, Robinson DB (1987) Equilibrium phase properties of selected carbon dioxide binary system n-pentane–carbon dioxide and isopentane–carbon dioxide. J Chem Eng Data 32(4):447–450Google Scholar
  28. 28.
    Xu N, Yao J, Wang Y et al (1991) Vapor–liquid equilibria of five binary systems containing R-22. Fluid Phase Equilib 69:261–270Google Scholar
  29. 29.
    Cheng H (1992) Vapor–liquid equilibrium in the system carbon dioxide/iso-pentane from 253 to 443 K at pressures up to 10 MPa. Chin J Chem Eng 7(2):157–163MathSciNetGoogle Scholar
  30. 30.
    Besserer GJ, Robinson DB (1975) Equilibrium-phase properties of isopentane + carbon dioxide system. J Chem Eng Data 20(1):93–96Google Scholar
  31. 31.
    Bian B, Wang Y, Shi J et al (1993) Simultaneous determination of vapor–liquid equilibrium and molar volumes for coexisting phases up to the critical temperature with a static method. Fluid Phase Equilib 90(1):177–187Google Scholar
  32. 32.
    Fontalba F, Richon D, Renon H (1984) Simultaneous determination of vapor–liquid equilibria and saturated densities up to 45 MPa and 433 K. Rev Sci Instrum 55(6):944–951Google Scholar
  33. 33.
    Ohgaki K, Katayama T (1976) Isothermal vapor–liquid equilibrium data for binary systems containing carbon dioxide at high pressures: methanol–carbon dioxide, n-hexane–carbon dioxide, and benzene–carbon dioxide systems. J Chem Eng Data 21(1):53–55Google Scholar
  34. 34.
    Wagner Z, Wichterle I (1987) High-pressure vapour-liquid equilibrium in systems containing carbon dioxide, 1-hexene, and n-hexane. Fluid Phase Equilib 33(1–2):109–123Google Scholar
  35. 35.
    Chen D, Chen W (1992) Phase equilibria of n-hexane and n-octane in critical carbon dioxide. Chem Eng (China) 20:66–69 (in Chinese) Google Scholar
  36. 36.
    Li YH, Dillard KH Jr, Robinson RL Jr. (1981) Vapor–liquid phase equilibrium for carbon dioxide–n-hexane at 40, 80, and 120 °C. J Chem Eng Data 26(1):53–55Google Scholar
  37. 37.
    Kaminishi GI, Yokoyama C, Shinji T (1987) Vapor pressures of binary mixtures of carbon dioxide with benzene, n-hexane and cyclohexane up to 7 MPa. Fluid Phase Equilib 34(1):83–99Google Scholar
  38. 38.
    Lay EN, Taghikhani V, Ghotbi C (2006) Measurement and correlation of CO2 solubility in the systems of CO2 plus toluene, CO2 plus benzene, and CO2 plus n-hexane at near-critical and supercritical conditions. J Chem Eng Data 51(6):2197–2200Google Scholar
  39. 39.
    Lay EN (2010) Measurement and correlation of bubble point pressure in (CO2 + C6H6), (CO2 + CH3C6H5), (CO2 + C6H14), and (CO2 + C7H16) at temperatures from (293.15 to 313.15) K. J Chem Eng Data 55(1):223–227MathSciNetGoogle Scholar
  40. 40.
    Gupta MK, Li YH, Hulsey BJ et al (1982) Phase equilibrium for carbon dioxide‒benzene at 313.2, 353.2, and 393.2 K. J Chem Eng Data 27(1):55–57Google Scholar
  41. 41.
    Kim CH, Vimalchand P, Donohue MD (1986) Vapor–liquid equilibria for binary mixtures of carbon dioxide with benzene, toluene and p-xylene. Fluid Phase Equilib 31(3):299–311Google Scholar
  42. 42.
    Bendale PG, Enick RM (1994) Use of carbon dioxide to shift benzene/acetonitrile and benzene/cyclohexane azeotropes. Fluid Phase Equilib 94:227–253Google Scholar
  43. 43.
    Nagarajan N, Robinson RL Jr. (1987) Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 3. CO2 + cyclohexane. 4. CO2 + benzene. J Chem Eng Data 32(3):369–371Google Scholar
  44. 44.
    Inomata H, Arai K, Saito S (1987) Vapor–liquid equilibria for CO2/hydrocarbon mixtures at elevated temperatures and pressures. Fluid Phase Equilib 36:107–119Google Scholar
  45. 45.
    Barrick MW, Anderson JMR, Robinson RL (1986) Solubilities of carbon dioxide in cyclohexane and trans-decalin at pressures to 10.7 MPa and temperatures from 323 to 423 K. J Chem Eng Data 31(2):172–175Google Scholar
  46. 46.
    Kalra H, Kubota H, Robinson DB et al (1978) Equilibrium phase properties of the carbon dioxide–n-heptane system. J Chem Eng Data 23(4):317–321Google Scholar
  47. 47.
    Yan H, Luo Z, Ma S et al (1994) Measuring phase equilibria of carbon dioxide–n-heptane system by stoechiometry. J East China Univ Sci Technol 20(1):79–84 (in Chinese) Google Scholar
  48. 48.
    Inomata H, Arai K, Saito S (1986) Measurement of vapor–liquid equilibria at elevated temperatures and pressures using a flow type apparatus. Fluid Phase Equilib 29(5):225–232Google Scholar
  49. 49.
    Mutelet F, Vitu S, Privat R et al (2005) Solubility of CO2 in branched alkanes in order to extend the PPR78 model (predictive 1978, Peng–Robinson EOS with temperature-dependent k ij calculated through a group contribution method) to such systems. Fluid Phase Equilib 238(2):157–168Google Scholar
  50. 50.
    Tochigi K, Namaea T, Suga T et al (2010) Measurement and prediction of high-pressure vapor–liquid equilibria for binary mixtures of carbon dioxide + n-octane, methanol, ethanol, and perfluorohexane. J Supercrit Fluids 55(2):682–689Google Scholar
  51. 51.
    Jimenez-Gallegos R, Galicia-Luna LA, Elizalde-Solis O (2006) Experimental vapor–liquid equilibria for the carbon dioxide plus octane and carbon dioxide plus decane systems. J Chem Eng Data 51(5):1624–1628Google Scholar
  52. 52.
    Weng WL, Lee MJ (1992) Vapor–liquid equilibrium of the octane + carbon dioxide, octane + ethane, and octane + ethylene systems. J Chem Eng Data 37(2):213–215Google Scholar
  53. 53.
    Yu J, Wang S, Tian Y (2006) Experimental determination and calculation of thermodynamic properties of CO2 + octane to high temperatures and high pressures. Fluid Phase Equilib 246(1–2):6–14Google Scholar
  54. 54.
    Camacho-Camacho LE, Galicia-Luna LA, Elizalde-Solis O et al (2007) New isothermal vapor–liquid equilibria for the CO2 + n-nonane, and CO2 + n-undecane systems. Fluid Phase Equilib 259(1):45–50Google Scholar
  55. 55.
    Jennings DW, Schucker RC (1996) Comparison of high-pressure vapor–liquid equilibria of mixtures of CO2 or propane with nonane and C9 alkylbenzenes. J Chem Eng Data 41(4):831–838Google Scholar
  56. 56.
    Reamer HH, Sage BH (1963) Phase equilibria in hydrocarbon systems. Volumetric and phase behavior in the n-decane‒CO2 system. J Chem Eng Data 8(4):508–513Google Scholar
  57. 57.
    Nagarajan N, Robinson RL (1986) Equilibrium phase compositions, phase densities, and interfacial tensions for carbon dioxide + hydrocarbon systems. 2. Carbon dioxide + n-decane. J Chem Eng Data 31(2):168–171Google Scholar
  58. 58.
    Sebastian HM, Simnick JJ, Lin HM et al (1980) Vapor–liquid equilibrium in binary mixtures of carbon dioxide + n-decane and carbon dioxide + n-hexadecane. J Chem Eng Data 25(2):138–140Google Scholar
  59. 59.
    Han B, Peng DY, Fu CT et al (1992) An apparatus for phase equilibrium studies of carbon dioxide + heavy hydrocarbon systems. Can J Chem Eng 70(6):1164–1171Google Scholar
  60. 60.
    Yang Z, Li M, Peng B et al (2012) Dispersion property of CO2 in oil. 1. Volume expansion of CO2 + alkane at near critical and supercritical condition of CO2. J Chem Eng Data 57(3):882–889Google Scholar
  61. 61.
    Nourozieh H, Kariznovi M, Abedi J (2013) Measurement and correlation of saturated liquid properties and gas solubility for decane, tetradecane and their binary mixtures saturated with carbon dioxide. Fluid Phase Equilib 337(2):246–254Google Scholar
  62. 62.
    Tsuji T, Tanaka S, Hiaki T et al (2004) Measurements of bubble point pressure for CO2 + decane and CO2 + lubricating oil. Fluid Phase Equilib 219(1):87–92Google Scholar
  63. 63.
    Shaver RD Jr, Robinson RL, Gasem KAM (2001) An automated apparatus for equilibrium phase compositions, densities, and interfacial tensions data for carbon dioxide + decane. Fluid Phase Equilib 179(1–2):43–66Google Scholar
  64. 64.
    Vitu S, Privat R, Jaubert JN et al (2008) Predicting the phase equilibria of CO2 + hydrocarbon systems with the PPR78 model (PR EOS and k ij calculated through a group contribution method). J Supercrit Fluids 45(1):1–26Google Scholar
  65. 65.
    Jaubert JN, Mutelet F (2004) VLE predictions with the Peng–Robinson equation of state and temperature dependent k ij calculated through a group contribution method. Fluid Phase Equilib 224(2):285–304Google Scholar
  66. 66.
    Qian JW, Jaubert JN, Privat R (2013) Phase equilibria in hydrogen-containing binary systems modeled with the Peng–Robinson equation of state and temperature-dependent binary interaction parameters calculated through a group-contribution method. J Supercrit Fluids 75:58–71Google Scholar
  67. 67.
    Polishuk I, Wisniak J, Segura H (2003) Simultaneous prediction of the critical and sub-critical phase behavior in mixtures using equations of state II. Carbon dioxide–heavy n-alkanes. Chem Eng Sci 58(12):2529–2550Google Scholar
  68. 68.
    Polishuk I, Wisniak J, Segura H (2003) Estimation of liquid–liquid–vapor equilibria using predictive EOS models. 1. Carbon dioxide–n-alkanes. J Phys Chem B 107(8):1864–1874Google Scholar
  69. 69.
    Galindo A, Blas FJ (2002) Theoretical examination of the global fluid phase behavior and critical phenomena in carbon dioxide + n-alkane binary mixtures. J Phys Chem B 106(17):4503–4515Google Scholar
  70. 70.
    García J, Lugo L, Fernández J (2004) Phase equilibria, PVT behavior, and critical phenomena in carbon dioxide + n-alkane mixtures using the perturbed-chain statistical associating fluid theory approach. Ind Eng Chem Res 43(26):8353–8354Google Scholar
  71. 71.
    Fu D, Liang L, Li XS et al (2006) Investigation of vapor–liquid equilibria for supercritical carbon dioxide and hydrocarbon mixtures by perturbed-chain statistical associating fluid theory. Ind Eng Chem Res 45(12):4364–4370Google Scholar
  72. 72.
    Arce P, Aznar M (2007) Modeling of critical lines and regions for binary and ternary mixtures using non-cubic and cubic equations of state. J Supercrit Fluids 42(1):1–26Google Scholar
  73. 73.
    Arce PF, Aznar M (2008) Computation and modeling of critical phenomena with the perturbed chain-statistical associating fluid theory equation of state. J Supercrit Fluids 43(3):408–420Google Scholar
  74. 74.
    Llovell F, Vega LF (2006) Global fluid phase equilibria and critical phenomena of selected mixtures using the crossover soft-SAFT equation. J Phys Chem B 110(3):1350–1362Google Scholar
  75. 75.
    Thi CL, Tamouza S, Passarello JP et al (2006) Modeling phase equilibrium of H2 + n-alkane and CO2 + n-alkane binary mixtures using a group contribution statistical association fluid theory equation of state (GC-SAFT-EOS) with a k ij group contribution method. Ind Eng Chem Res 45(20):6803–6810Google Scholar
  76. 76.
    Li J, Qin Z, Wang G et al (2007) Critical temperatures and pressures of several binary and ternary mixtures concerning the alkylation of 2-methylpropane with 1-butene in the presence of methane or carbon dioxide. J Chem Eng Data 52(5):1736–1740Google Scholar
  77. 77.
    Yousef AM, Elkanzi EM, Singh H (2001) Prediction of supercritical CO2 solubility using the Krichevsky–Ilinskaya equation with \({\bar{\text{v}}}2^{\infty }\) as an adjustable parameter. J Supercrit Fluids 20(2):105–112Google Scholar
  78. 78.
    Costa GMN, Cardoso SG, Soares RO et al (2014) Modeling high pressure vapor–liquid equilibrium of ternary systems containing supercritical CO2 and mixed organic solvents using Peng–Robinson equation of state. J Supercrit Fluids 93:82–90Google Scholar
  79. 79.
    Williams-Wynn MD, Naidoo P, Ramjugernath D (2016) Isothermal (vapour + liquid) equilibrium data for binary systems of (n-hexane + CO2 or CHF3). J Chem Thermodyn 94:31–42Google Scholar
  80. 80.
    Nagarajan N, Gasem KAM, Robinson RL Jr. (1990) Equilibrium phase compositions, phase densities, and interfacial tensions for CO2 + hydrocarbon systems. 6. CO2 + n-butane + n-decane. J Chem Eng Data 35(3):228–231Google Scholar
  81. 81.
    Sánchez-García C, Vázquez-Hernández KE, Galicia-Luna LA et al (2011) Vapor–liquid equilibrium measurements for the ternary systems of CO2 + n-hexane +n-decane and CO2 + n-octane + n-decane. Ind Eng Chem Res 50(21):12254–12258Google Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chuanyan Li
    • 1
  • Yahui Gao
    • 1
  • Shuqian Xia
    • 1
    Email author
  • Qiaoyan Shang
    • 2
  • Peisheng Ma
    • 1
  1. 1.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina

Personalised recommendations