Transactions of Tianjin University

, Volume 25, Issue 2, pp 101–109 | Cite as

Highly Selective Lithium Ion Adsorbents: Polymeric Porous Microsphere with Crown Ether Groups

  • Caideng YuanEmail author
  • Lei Zhang
  • Haichao Li
  • Ruiwei Guo
  • Meng Zhao
  • Lan Yang
Research Article


In this study, we prepared and applied polymeric porous microsphere adsorbents with selectivity for Li+ extraction from aqueous solution. We synthesized the adsorbents by suspension polymerization using methacryloyoxyme-12-crown-4 (M12C4) as a functional monomer, which had been synthesized from 2-hyroxymethyl-12-crown-4 and methacryloyl chloride. We verified the chemical composition by solid nuclear magnetic resonance (13C-NMR) spectroscopy and observed the porous structure by scanning electron microscopy (SEM). We conducted adsorption isothermal and kinetic tests to determine the adsorption properties. It was found that the adsorbents showed high adsorption efficiency and an adsorption equilibrium time of 200 min. In addition, since the crown ether used in this work could form a stable complex with Li+, we observed good selectivity for Li+ in the prepared solution compared with other ions such as Na+, K+, Mg2+, and Ca2+. We reused the adsorbents five times with no significant decrease in adsorptive capacity.


Lithium Crown ether Adsorption Suspension polymerization Microsphere adsorbent 



This work was supported by Tianjin University-Qinghai Nationalities University Joint Innovation Fund (no. 2016XZC-0034).


  1. 1.
    Liu X, Huang JQ, Zhang Q et al (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29(20):1601759CrossRefGoogle Scholar
  2. 2.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  3. 3.
    Väyrynen A, Salminen J (2012) Lithium ion battery production. J Chem Thermodyn 46(1):80–85CrossRefGoogle Scholar
  4. 4.
    Mei H, Wu Q, Chen J et al (2016) Equivalent determination of tritium production in liquid blanket of fusion reactor using lithium isotopic abundance analysis. Fusion Eng Des 112:89–92CrossRefGoogle Scholar
  5. 5.
    Modi KB, Acharya R, Munot S et al (2017) Chemical characterization of lithium titanate and lithium aluminate as tritium breeders of fusion reactor by PIGE and INAA methods. J Radioanal Nucl Chem 314(2):1113–1120CrossRefGoogle Scholar
  6. 6.
    Wu R, Yan Y, Wang G et al (2015) Recent progress in magnesium–lithium alloys. Int Mater Rev 60(2):65–100CrossRefGoogle Scholar
  7. 7.
    Dursun T, Soutis C (2014) Recent developments in advanced aircraft aluminium alloys. Mater Des 56:862–871CrossRefGoogle Scholar
  8. 8.
    Kesler SE, Gruber PW, Medina PA et al (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev 48(5):55–69CrossRefGoogle Scholar
  9. 9.
    Hamzaoui AH, M’nif A, Hammi H et al (2003) Contribution to the lithium recovery from brine. Desalination 158:221–224CrossRefGoogle Scholar
  10. 10.
    Li XG, Hou LS, Li ZD et al (2016) Lithium resources in brine of China’s sea salt field operations. Acta Geol Sin Engl 90(2):767–768CrossRefGoogle Scholar
  11. 11.
    Swain B (2016) Recovery and recycling of lithium: a review. Sep Purif Technol 172:388–403CrossRefGoogle Scholar
  12. 12.
    Wajima T, Munakata K, Uda T (2012) Adsorption behavior of lithium from seawater using manganese oxide adsorbent. Plasma Fusion Res 7:2405021-1-4CrossRefGoogle Scholar
  13. 13.
    Um N, Hirato T (2014) Precipitation behavior of Ca(OH)2, Mg(OH)2, and Mn(OH)2 from CaCl2, MgCl2, and MnCl2 in NaOH–H2O solutions and study of lithium recovery from seawater via two-stage precipitation process. Hydrometallurgy 146(3):142–148CrossRefGoogle Scholar
  14. 14.
    Shi C, Jing Y, Xiao J et al (2017) Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents. Sep Purif Technol 172:473–479CrossRefGoogle Scholar
  15. 15.
    Swain B (2016) Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J Chem Technol Biotechnol 91(10):2549–2562CrossRefGoogle Scholar
  16. 16.
    Zhu YF, Zheng YA, Wang F et al (2016) Fabrication of magnetic porous microspheres via (O1/W)/O2 double emulsion for fast removal of Cu2+ and Pb2+. J Taiwan Inst Chem Eng 67:505–510CrossRefGoogle Scholar
  17. 17.
    Wang J, Zhang WH, Qian YC et al (2016) pH, temperature, and magnetic triple-responsive polymer porous microspheres for tunable adsorption. Macro Mater Eng 301(9):1132–1141CrossRefGoogle Scholar
  18. 18.
    Ge YY, Qin L, Li ZL (2016) Lignin microspheres: an effective and recyclable natural polymer-based adsorbent for lead ion removal. Mater Des 95:141–147CrossRefGoogle Scholar
  19. 19.
    Ding H, Zhang L, Zhang P (2017) Factors influencing strength of super absorbent polymer (SAP) concrete. Trans Tianjin Univ 23(3):245–257CrossRefGoogle Scholar
  20. 20.
    Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89(26):7017–7036CrossRefGoogle Scholar
  21. 21.
    Kim YS, Lee HM, Kim JH et al (2015) Hydrogel adsorbents of poly(N-isopropylacrylamide-co-methacryloyloxymethyl-12-crown-4) for Li+ recovery prepared by droplet microfluidics. RSC Adv 5(14):10656–10661CrossRefGoogle Scholar
  22. 22.
    Hashemi B, Shamsipur M, Seyedzadeh Z (2016) Synthesis of ion imprinted polymeric nanoparticles for selective pre-concentration and recognition of lithium ions. New J Chem 40(5):4803–4809CrossRefGoogle Scholar
  23. 23.
    Sun D, Zhu Y, Meng M et al (2017) Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion. Sep Purif Technol 175:19–26CrossRefGoogle Scholar
  24. 24.
    Chitrakar R, Kanoh H, Miyai Y et al (2000) A new type of manganese oxide (MnO2·0.5H2O) derived from Li1.6Mn1.6O4 and its lithium ion-sieve properties. Chem Mater 12(10):3151–3157CrossRefGoogle Scholar
  25. 25.
    Tian LY, Ma W, Han M (2010) Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide. Chem Eng J 156(1):134–140CrossRefGoogle Scholar
  26. 26.
    Mayes AG, Blyth J, Millington RB et al (2002) Metal ion-sensitive holographic sensors. Anal Chem 74(15):3649–3657CrossRefGoogle Scholar
  27. 27.
    Ren J, Li N, Zhao L et al (2017) Pretreatment of raw biochar and phosphate removal performance of modified granular iron/biochar. Trans Tianjin Univ 23(4):340–350CrossRefGoogle Scholar
  28. 28.
    Xiao JL, Sun SY, Song XF et al (2015) Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve. Chem Eng J 279:659–666CrossRefGoogle Scholar
  29. 29.
    Erbay E, Okay O (1998) Macroporous styrene-divinylbenzene copolymers: formation of stable porous structures during the copolymerization. Polym Bull 41(3):379–385CrossRefGoogle Scholar
  30. 30.
    Ren Z, Kong D, Wang K et al (2014) Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(VI) ions from aqueous solutions. J Mater Chem A 2(42):17952–17961CrossRefGoogle Scholar
  31. 31.
    Dardouri M, Amor ABH, Meganem F (2016) Diazabenzo crowns grafted on the polystyrene and application of extraction of metal cations. Desalin Water Treat 57(14):1–10CrossRefGoogle Scholar
  32. 32.
    Starynowicz P (2003) Europium(II) complexes with unsubstituted crown ethers. Polyhedron 22(2):337–345CrossRefGoogle Scholar
  33. 33.
    Han Y, Kim H, Park J (2012) Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater. Chem Eng J 210(6):482–489CrossRefGoogle Scholar
  34. 34.
    Wang L, Ma W, Liu R et al (2006) Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor. Solid State Ionics 177(17):1421–1428CrossRefGoogle Scholar
  35. 35.
    Song D, Park SJ, Kang HW et al (2013) Recovery of lithium(I), strontium(II), and lanthanum(III) using Ca–alginate beads. J Chem Eng Data 58(9):2455–2464CrossRefGoogle Scholar
  36. 36.
    Luo XB, Guo B, Luo JM et al (2015) Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain Chem Eng 3(3):460–467MathSciNetCrossRefGoogle Scholar

Copyright information

© Tianjin University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Caideng Yuan
    • 1
    Email author
  • Lei Zhang
    • 1
  • Haichao Li
    • 2
  • Ruiwei Guo
    • 1
  • Meng Zhao
    • 1
  • Lan Yang
    • 1
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.School of Chemistry and Chemical EngineeringQinghai Nationalities UniversityXiningChina

Personalised recommendations