Journal of Mechanical Science and Technology

, Volume 33, Issue 11, pp 5571–5580 | Cite as

Effects of the cell and triangular microwell size on the cell-trapping efficacy and specificity

  • Tewan Tongmanee
  • Werayut Srituravanich
  • Achariya Sailasuta
  • Witsaroot Sripumkhai
  • Wutthinan Jeamsaksiri
  • Kenichi Morimoto
  • Yuji Suzuki
  • Alongkorn PimpinEmail author


The single-, double- or multiple-cell entrapment efficacy is crucial in various aspects of biological studies. In this study, both computational and experimental approaches were conducted to explore the effect of the cell and microwell sizes on the ability of cell-trapping in a triangular microwell. From computational studies, it was found that the interaction between a spanwise vortex on the upper part and counter-rotating streamwise vortices at the leading edge helped to form a pair of secondary streamwise vortices deeper inside the microwell. The strength and size of these secondary streamwise vortices, which depended on the size of the microwell, played an important role in the arrangement of entrapped cells. The experimental results, with both microbeads and white blood cells (WBCs), were in good agreement with the simulated ones, and suggested that the ratio between the cell and microwell sizes was an important factor in the efficacy of single-, double- and multiple-cell cell-trapping. Entrapment of canine WBCs (size distribution between 7–15 µm) attained a highest single-cell trapping efficiency of 20.4 % in the array of 40-µm triangular microwells of 30 µm depth at a flow rate of 0.1 mL/h, but this was reduced to 16.5 and 10.6 % in the 60- and 80-µm microwells, respectively, under the same conditions.


Cell trapping Triangular microwell Microfluidics Flow circulation White blood cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support was received through Chulalongkorn Academic Advancement into its 2nd Century Project (Smart Medical Device & 3D Printing for Product Development). T.T. was a Graduate Research Fellow (The 90th Anniversary of Chulalongkorn University Fund). The authors would like to thank Dr. Mayuree Chanasakulniyom and Dr. Dettachai Ketpun for their helpful assistance. Dr. Takayuki Nakagawa (The University of Tokyo) provided cell line in this study.


  1. [1]
    H. Yin and D. Marshall, Microfluidics for single cell analysis, Curr. Opin. Biotechnol., 23 (1) (2012) 110–119.Google Scholar
  2. [2]
    A. Marusyk, V. Almendro and K. Polyak, Intra-tumour heterogeneity: a looking glass for cancer?, Nat. Rev. Cancer, 12 (5) (2012) 323–334.Google Scholar
  3. [3]
    D. Pappas, Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems, Analyst, 141, (2016) 525–535.Google Scholar
  4. [4]
    Q. Huang, S. Mao, M. Khan and J. M. Lin, Single-cell assay on microfluidic devices, Analyst, 144, (2019) 808–823.Google Scholar
  5. [5]
    J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. Schueller and G. M. Whitesides, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, 21, (2000) 27–40.Google Scholar
  6. [6]
    A. R. Wheeler, W. R. Throndset, R. J. Whelan, A. M. Leach, R. N. Zare, Y. H. Liao, K. Farrell, I. D. Manger and A. Daridon, Microfluidic device for single-cell analysis, Anal. Chem., 75, (2003) 3581–3586.Google Scholar
  7. [7]
    T. C. Chao and A. Ros, Microfluidic single-cell analysis of intracellular compounds, J. R. Soc. Interface, 5, (2008) 139–150.Google Scholar
  8. [8]
    F. Fritzsch, C. Dusny, O. Frick and A. Schmid, Single-cell analysis in biotechnology, systems biology, and biocatalysis, Annu. Rev. Chem. Biomol. Eng., 3, (2012) 129–155.Google Scholar
  9. [9]
    M. Xavier, R. Oreffo and H. Morgan, Skeletal stem cell isolation: A review on the state-of-the-art microfluidic labelfree sorting techniques, Biotechnol., 34, (2016) 908–923.Google Scholar
  10. [10]
    B. Viswanath and S. Kim, Recent insights into the development of nanotechnology to detect circulating tumor cells, Trends Analy. Chem., 82, (2016) 191–198.Google Scholar
  11. [11]
    M. Antfolk, S. H. Kim, S. Koizumi, T. Fujii and T. Laurell, Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system, Sci. Rep., 7 (2017) 46507.Google Scholar
  12. [12]
    V. Narayanamurthy, S. Nagarajan, A. Khan, F. Samsuri and T. M. Sridhar, Microfluidic hydrodynamic trapping for single cell analysis: Mechanisms, methods and applications, Anal. Methods, 9, (2017) 3751–3772.Google Scholar
  13. [13]
    T. W. Murphy, Q. Zhang, L. B. Naler, S. Ma and C. Lu, Recent advances in the use of microfluidic technologies for single cell analysis, Analyst, 143, (2018) 60–80.Google Scholar
  14. [14]
    A. A. Khalili, M. R. Ahmad, M. Takeuchi, M. Nakajima, Y. Hasegawa and R. M. Zulkifli, A microfluidic device for hydrodynamic trapping and manipulation platform of a single biological cell, Appl. Sci., 6 (2016) Doi: 10.3390/app6020040.Google Scholar
  15. [15]
    D. Di Carlo, N. Aghdam and L. P. Lee, Single-cell enzyme concentrations, kinetics, and inhibition analysis using highdensity hydrodynamic cell isolation arrays, Anal. Chem., 78 (14) (2006) 4925–4930.Google Scholar
  16. [16]
    D. Di Carlo, L. Y. Wu and L. P. Lee, Dynamic single cell culture array, Lab Chip, 6 (11) (2006) 1445–1449.Google Scholar
  17. [17]
    W. H. Tan and S. Takeuchi, Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads, Lab Chip, 8, (2008) 259–266.Google Scholar
  18. [18]
    K. Chung, C. A. Rivet, M. L. Kemp and H. Lu, Imaging single-cell signaling dynamics with a deterministic highdensity single-cell trap array, Anal. Chem., 83 (18) (2011) 7044–7052.Google Scholar
  19. [19]
    A. Benavente-Babace, D. Gallego-Pérez, D. J. Hansford, S. Arana, E. Pérez-Lorenzo and M. Mujika, Single-cell trapping and selective treatment via co-flow within a microfluidic platform, Biosens. Bioelectron., 61, (2014) 298–305.Google Scholar
  20. [20]
    D. Jin, B. Deng, J. X. Li, W. Cai, L. Tu, J. Chen, Q. Wu and W. H. Wang, A microfluidic device enabling highefficiency single cell trapping, Biomicrofluidics, 9 (2015) 014101.Google Scholar
  21. [21]
    Y. Kazayama, T. Teshima, T. Osaki, S. Takeuchi and T. Toyota, Integrated microfluidic system for size-based selection and trapping of giant vesicles, Anal. Chem., 88 (2016) 1111–1116.Google Scholar
  22. [22]
    L. Zhao, C. Ma, S. Shen, C. Tian, J. Xu, Q. Tu, T. Li, Y. Wang and J. Wang, Pneumatic microfluidics-based multiplex single-cell array, Biosens. Bioelectron., 78, (2016) 423–430.Google Scholar
  23. [23]
    M. Yu, Z. Chen, C. Xiang, B. Liu, H. Xie and K. Qin, Microfluidic- based single cell trapping using a combination of stagnation point flow and physical barrier, Acta. Mech. Sin., 32, (2016) 422–429.Google Scholar
  24. [24]
    Y. Zhou, S. Basu, K. Wohlfahrt, S. Lee, D. Klenerman, E. Laue and A. Seshia, A microfluidic platform for trapping, releasing and super-resolution imaging of single cells, Sensors Actuators B, 232, (2016) 680–691.Google Scholar
  25. [25]
    M. Sauzade and E. Brouzes, Deterministic trapping, encapsulation and retrieval of single-cells, Lab Chip, 17, (2017) 2186–2192.Google Scholar
  26. [26]
    J. Avesar, T. B. Arye and S. Levenberg, Frontier microfluidic techniques for short and long-term single cell analysis, Lab Chip, 14, (2014) 2161–2167.Google Scholar
  27. [27]
    H. Chen, J. Sun, E. Wolvetang and J. Cooper-White, Highthroughput deterministic single cell trapping and long-term clonal cell culture in microfluidic devices, Lab Chip, 15, (2015) 1072–1083.Google Scholar
  28. [28]
    C. Luo, X. Zhu, T. Yu, X. Luo, Q. Quyang, H. Ji and Y. Chen, A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments, Biotech. Bioeng., 101 (1) (2008) 190–195.Google Scholar
  29. [29]
    J. R. Rettig and A. Folch, Large-scale single-cell trapping and imaging using microwell arrays, Anal. Chem., 77 (2005) 5628–5634.Google Scholar
  30. [30]
    Y. Tokimitsu, H. Kishi, S. Kondo, R. Honda, K. Tajiri, K. Motoki, T. Ozawa, S. Kadowaki, T. Obata, S. Fujiki, C. Tateno, H. Takaishi, K. Chayama, K. Yoshizato, E. Tamiya, T. Sugiyama and A. Muraguchi, Single lymphocyte analysis with a microwell array chip, Cytometry Part A, 71, (2007) 1003–1010.Google Scholar
  31. [31]
    C. Tu, B. Huang, J. Zhou, Y. Liang, J. Tian, L. Ji, X. Liang and Z. Ye, A microfluidic chip for cell patterning utilizing paired microwells and protein patterns, Micromachines, 8 (2017) Doi: 10.3390/mi8010001.Google Scholar
  32. [32]
    A. Khademhosseini, L. Ferreira, J. Blumling III, J. Yeh, J. M. Karp, J. Fukuda and R. Langer, Co-culture of human embryonic stem cells with murine embryonic fibroblasts on microwell-patterned substrates, Biomaterials, 27, (2006) 5968–5977.Google Scholar
  33. [33]
    H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung and A. Khademhosseini, A microwell array system for stem cell culture, Biomaterials, 29, (2008) 752–763.Google Scholar
  34. [34]
    A. Manbachi, S. Shrivastava, M. Cioffi, B. G. Chung, M. Moretti, U. Demirci, M. Yliperttula and A. Khademhosseini, Microcirculation within grooved substrates regulates cell positioning and cell docking inside microfluidic channels, Lab Chip, 8 (5) (2008) 747–754.Google Scholar
  35. [35]
    Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim and S. H. Lee, Controlled-size embryoid body formation in concave microwell arrays, Biomaterials, 31, (2010) 4296–4303.Google Scholar
  36. [36]
    J. Y. Park, M. Morgan, A. N. Sachs, J. Samorezov, R. Teller, Y. Shen, K. J. Pienta and S. Takayama, Single cell trapping in larger microwells capable of supporting cell spreading and proliferation, Microfluid. Nanofluid., 8, (2010) 263–268.Google Scholar
  37. [37]
    C. P. Jen, J. H. Hsiao and N. A. Maslov, Single-cell chemical lysis on microfluidic chips with arrays of microwells, Sensors, 12, (2012) 347–358.Google Scholar
  38. [38]
    K. Nakazawa, Y. Yoshiura, H. Koga and Y. Sakai, Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes, J. Biosci. Bioeng., 116 (5) (2013) 628–633.Google Scholar
  39. [39]
    A. Karimi, S. Yazdi and A. M. Ardekani, Hydrodynamic mechanisms of cell and particle trapping in microfluidics, Biomicrofluidics, 7 (2013) 021501.Google Scholar
  40. [40]
    L. Huang, Y. Chen, Y. Chen and H. Wu, Centrifugation-Assisted single-cell trapping in a truncated cone-shaped microwell array chip for the real-time observation of cellular apoptosis, Anal. Chem., 87 (2015) 12169–12176.Google Scholar
  41. [41]
    J. Park, M. Müller, J. Kim and H. Seidel, Fabrication of a cell-adhesive microwell array for 3-dimensional in vitro cell model, Biomed. Eng. Lett., 5 (2015) 140–146.Google Scholar
  42. [42]
    T. Tongmanee, A. Pimpin, W. Srituravanich, D. Ketpun, A. Sailasuta, P. Piyaviriyakul, W. Jeamsaksiri and W. Sripumkhai, Development of a triangular microwell for single cell trapping- computational study, IEEE BMEiCON 2015, Thailand (2015) 978-1-4673-9158-0/15.Google Scholar
  43. [43]
    A. Hattori, T. Yagi and C. W. Tsao, Encapsulation of single cells into fixed droplets using triangular microwells, Electron. Commun Jpn., 99 (2) (2016) 55–63.Google Scholar
  44. [44]
    T. Takahashi, T. Kadosawa, M. Nagase, M. Mochizuki, S. Matsunaga, R. Nishimura and N. Sasaki, Inhibitory effects of glucocorticoids on proliferation of canine mast cell tumor, J. Vet. Med. Sci., 59 (11) (1997) 995–1001.Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Tewan Tongmanee
    • 1
  • Werayut Srituravanich
    • 1
  • Achariya Sailasuta
    • 2
  • Witsaroot Sripumkhai
    • 3
  • Wutthinan Jeamsaksiri
    • 3
  • Kenichi Morimoto
    • 4
  • Yuji Suzuki
    • 4
  • Alongkorn Pimpin
    • 1
    Email author
  1. 1.Department of Mechanical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  2. 2.Department of Pathology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand
  3. 3.Thai Microelectronics Center (TMEC)ChachoengsaoThailand
  4. 4.Department of Mechanical EngineeringThe University of TokyoTokyoJapan

Personalised recommendations