Journal of Mechanical Science and Technology

, Volume 33, Issue 9, pp 4383–4388 | Cite as

Performance and evaluation of MoS2 based machining using PVD-TiAlN coated tool

  • Viswanathan SivaramanEmail author
  • Subramanian Prakash


A recent trend on turning of difficult-to-machine (DTM) materials using environmentally friendly vegetable oil has became popular due to its immense machinability aids. Conventional cutting oils fail to give cooling/lubrication at higher cutting speed-feed combination and create environmental pollution. The present work investigated the effect of molybdenum disulphide nanoparticle (nMoS2) dispersed in castor oil, as a cutting fluid, sprayed using minimum quantity lubrication (MQL) technique on turning of AISI O1 cold worked tool steel. The machining was carried out by varying the speed ranging from 110–170 m/min, a feed rate of 0.02-0.08 mm/rev and depth of cut of 0.7 mm. PVD-TiAlN coated tungsten carbide insert was used for the experimentation. The experimental results of nMQL condition were compared with the dry and wet condition. The results proved that application nMQL has given 15–49 % enhanced tool life with better surface finish as compared with dry and wet condition, respectively. No major phase change occurs in nMQL when compared with other conditions because of their low cutting temperature.


Minimum quantity lubrication O1 tool steel Vegetable oil nanofluid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Kuram, B. Ozcelik and E. Demirbas, Environmentally friendly machining: Vegetable based cutting fluids, Green Manufacturing Processes and Systems (2013) 23–47.CrossRefGoogle Scholar
  2. [2]
    B. Boswell, M. N. Islam, I. J. Davies, Y. R. Ginting and A. K. Ong, A review identifying the effectiveness of minimum quantity lubrication (MQL) during conventional machining, Int. J. Adv. Manuf. Technol., 92 (1–4) (2017) 321–340.CrossRefGoogle Scholar
  3. [3]
    O. Çakir, A. Yardimeden, T. Ozben and E. Kilickap, Selection of cutting fluids in machining processes, J. Achievements in Mater. and Manuf. Engg., 25 (2007) 99–102.Google Scholar
  4. [4]
    J. Kundrák, A. G. Mamalis, K. Gyani and A. P. Markopoulos, Environmentally friendly precision machining, Mater. Manuf. Process., 21 (1) (2006) 29–37.CrossRefGoogle Scholar
  5. [5]
    N. Boubekri, V. Shaikh and P. R. Foster, A technology enabler for green machining: minimum quantity lubrication (MQL), J. Manuf. Technol. Manag., 21 (5) (2010) 556–566.CrossRefGoogle Scholar
  6. [6]
    M. Amrita, R. R. Srikant and A. V. Sitaramaraju, Performance evaluation of nanographite-based cutting fluid in machining process, Mater. Manuf. Process., 29 (5) (2014) 600–605.CrossRefGoogle Scholar
  7. [7]
    H. Sohrabpoor, S. P. Khanghah and R. Teimouri, Investigation of lubricant condition and machining parameters while turning of AISI 4340, Int. J. Adv. Manuf. Technol., 76 (9–12) (2015) 2099–2116.CrossRefGoogle Scholar
  8. [8]
    E. A. Rahim, M. R. Ibrahim, A. A. Rahim, S. Aziz and Z. Mohid, Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique, Procedia CIRP, 26 (2015) 351–354.CrossRefGoogle Scholar
  9. [9]
    S. Debnath, M. M. Reddy and Q. S. Yi, Environmental friendly cutting fluids and cooling techniques in machining: A review, J. Clean. Prod., 83 (2014) 33–47.CrossRefGoogle Scholar
  10. [10]
    M. H. S. Elmunafi, N. M. Yusof and D. Kurniawan, Effect of cutting speed and feed in turning hardened stainless steel using coated carbide cutting tool under minimum quantity lubrication using castor oil, Adv. Mech. Eng., 7 (8) (2015) 1–7.CrossRefGoogle Scholar
  11. [11]
    N. R. Dhar, M. T. Ahmed and S. Islam, An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel, Int. J. Mach Tools & Manufacture, 47 (2007) 748–753.CrossRefGoogle Scholar
  12. [12]
    M. Hadad and B. Sadeghi, Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy, J. Clean. Prod., 54 (2013) 332–343.CrossRefGoogle Scholar
  13. [13]
    V. S. Sharma, M. Dogra and N. M. Suri, Cooling techniques for improved productivity in turning, Int. J. Mach.Tools. and Manuf., 49 (6) (2009) 435–453.CrossRefGoogle Scholar
  14. [14]
    S. Ravi and M. P. Kumar, Experimental investigation of cryogenic cooling in milling of AISI D3 tool steel, Materials and Manufacturing Processes, 27 (2012) 1017–1021.CrossRefGoogle Scholar
  15. [15]
    K. N. S. Ross and G. Manimaran, Effect of cryogenic coolant on machinability of difficult-to-machine Ni-Cr alloy using PVD-TiAlN coated WC tool, J. Braz. Soc. Mech. Sci. Eng., 41 (1) (2019) 44.CrossRefGoogle Scholar
  16. [16]
    B. Li, C. Li, Y. Zhang, Y. Wang, D. Jia, M. Yang, N. Zhang, Q. Wu, Z. Han and K. Sun, Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil, J. Clean. Prod., 154 (2017) 1–11.CrossRefGoogle Scholar
  17. [17]
    B. Rahmati, A. A. D. Sarhan and M. Sayuti, Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy, Int. J. Adv. Manuf. Technol., 70 (5–8) (2014) 1143.CrossRefGoogle Scholar
  18. [18]
    A. Karimi, M. A. A. Sadatlu, B. Saberi and H. M. Ashjaee, Experimental investigation on thermal conductivity of water based nickel ferrite nanofluids, Adv. Powder Technol., 26 (6) (2015) 1529–1536.CrossRefGoogle Scholar
  19. [19]
    N. Saravanakumar, L. Prabu, M. Karthik and A. Rajamanickam, Experimental analysis on cutting fluid dispersed with silver nano particles, J. of Mechanical Science and Technology, 28 (2) (2014) 645–651.CrossRefGoogle Scholar
  20. [20]
    A. K. Sharma, A. K. Tiwari, R. K. Singh and A. R. Dixit, Tribological investigation of TiO2 nanoparticle based cutting fluid in machining under minimum quantity lubrication (MQL), Mater. Today Proc., 3 (6) (2016) 2155–2162.CrossRefGoogle Scholar
  21. [21]
    X.-Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, Int. J. Therm. Sci., 46 (1) (2007) 1–19.CrossRefGoogle Scholar
  22. [22]
    R. Padmini, P. V. Krishna and G. K. M. Rao, Effectiveness of vegetable oil base nanofluids as potential cutting fluids in turning AISI 1040 steel, Tribology International, 94 (2016) 490–501.CrossRefGoogle Scholar
  23. [23]
    S. Kumar, D. Singh and N. S. Kalsi, Analysis of surface roughness during machining of hardened AISI 4340 steel using minimum quantity lubrication, Mater. Today Proc., 4 (2) (2017) 3627–3635.CrossRefGoogle Scholar
  24. [24]
    B. Rahmati, A. Ahmed, D. Sarhan and M. Sayuti, Investigating the optimum molybdenum disulphide (MoS2) nanolubrication parameters in CNC milling of AL6061 — T6 alloy, Int. J. Adv. Manuf. Technol., 70 (5–8) (2014) 1143–1155.CrossRefGoogle Scholar
  25. [25]
    A. Erdemir, Solid lubricants and self-lubricating films, Modern Tribology Handbook, CRC Press LLC (2001) Chapter 22.Google Scholar
  26. [26]
    ASTM E975-03, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation, ASTM International, West Conshohocken, PA (2003).Google Scholar
  27. [27]
    T. Hahn and P. Paufler, International tables for crystallography, Vol A: Space-group symmetry D, Reidel Publ. Co., Dordrecht, Holland/Boston, U. S. A., 1983, 854 Seiten, Cryst. Res. Technol., 19 (10) (1984) 1306.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Sathyabama Institute of Science and TechnologyChennaiIndia
  2. 2.School of Mechanical EngineeringSathyabama Institute of Science and TechnologyChennaiIndia

Personalised recommendations