Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 9, pp 4217–4226 | Cite as

Experimental and numerical characterization of mechanical properties of carbon/jute fabric reinforced epoxy hybrid composites

  • Aakash Ali
  • Muhammad Ali NasirEmail author
  • Muhammad Yasir Khalid
  • Saad Nauman
  • Khubab Shaker
  • Shahab Khushnood
  • Khurram Altaf
  • Muhammad Zeeshan
  • Azhar Hussain
Article
  • 16 Downloads

Abstract

Natural fiber composites have great potential for reducing the product cost, lowering weight and enhancing renewability. Functionality and performance of natural fibers can be enhanced many folds using them together with synthetic fibers. Hybridization of carbon and low-cost natural jute fiber offers a sustainable hybrid composite having high modulus and mechanical strength. This study investigates flexural behavior of carbon/jute epoxy composites experimentally and numerically. Also, impact response is characterized through drop weight method. Study concludes that flexural strength decreases with increase in jute percentage. Simulation of flexural behavior diverges more than 10 % from experimental results. This anomaly is due to waviness of fiber resulting in heterogeneous property distribution in composites. Further, the fracto-graphic study revealed modes of failure. The drop weight impact tests reveal increased damage area with increase in jute percentage.

Keywords

CFRP Drop weight test Flexural test Hybrid Numerical simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. H. Sun and J. J. Wang, The applied research of fiber reinforced composites materials in sports equipments, Adv. Mater. Res., 485 (2012) 506–509.Google Scholar
  2. [2]
    L. N. Sun and Z. Deng, The carbon fiber composite materials application in sports equipment, Adv. Mater. Res., 341–342 (2011) 173–176.Google Scholar
  3. [3]
    M. A. Nasir et al., Smart sensing layer for the detection of damage due to defects in a laminated composite structure, J. Intell. Mater. Syst. Struct., 26 (17) (2015) 2362–2368.Google Scholar
  4. [4]
    H. Adam, Carbon fibre in automotive applications, Mater. Des., 18 (4-6) (1997) 349–355.Google Scholar
  5. [5]
    S. Anas et al., Influence of MWCNTs as secondary reinforcement material in glass fiber / epoxy composites fabricated using VARTM, Appl. Compos. Mater., 2 (1) (2013) 17–26.Google Scholar
  6. [6]
    S. N. A. Safri, M. T. H. Sultan, M. Jawaid and K. Jayakrishna, Impact behaviour of hybrid composites for structural applications: A review, Compos. Part B Eng., 133 (2018) 112–121.Google Scholar
  7. [7]
    P. Hung, K. Lau, L. Cheng, J. Leng and D. Hui, Impact response of hybrid carbon / glass fi bre reinforced polymer composites designed for engineering applications, Compos. Part B, 133 (2018) 86–90.Google Scholar
  8. [8]
    F. Sarasini et al., Drop-weight impact behaviour of woven hybrid basalt-carbon/epoxy composites, Compos. Part B Eng., 59 (2014) 204–220.Google Scholar
  9. [9]
    S. Zahid et al., Experimental analysis of ILSS of glass fibre reinforced thermoplastic and thermoset textile composites enhanced with multiwalled carbon nanotubes, J. Mech. Sci. Technol., 33 (1) (2019) 197–204.MathSciNetGoogle Scholar
  10. [10]
    S. Ashworth, J. Rongong, P. Wilson and J. Meredith, Mechanical and damping properties of resin transfer moulded jute-carbon hybrid composites, Compos. Part B, 105 (2016) 60–66.Google Scholar
  11. [11]
    J. Zhang, K. Chaisombat, S. He and C. H. Wang, Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures, Mater. Des., 36 (2012) 75–80.Google Scholar
  12. [12]
    N. K. Naik, R. Ramasimha, H. Arya, S. V. Prabhu and N. Shamarao, Impact response and damage tolerance characteristics of glass ± carbon / epoxy hybrid composite plates, Composites Part B: Engineering, 32 (2001).Google Scholar
  13. [13]
    Ş. Çİtİl, Experimental and numerical investigation of adhesively bonded curved lap joints under three-point bending, Mechanika, 24 (6) (2018) 824–832.Google Scholar
  14. [14]
    Ş. Temiz, H. Adin and I. Sülü, Behaviour of bi-adhesive in double-strap joint with embedded patch subjected to bending, J. of Theoretical and Applied Mechanics, 45 (2015).Google Scholar
  15. [15]
    L. Vinšová and T. Urban, Testing of mechanical properties of thick-walled carbon fiber composite for FEM simulations, Mater. Today Proc., 4 (5) (2017) 5989–5994.Google Scholar
  16. [16]
    S. K. Chaudhary, K. K. Singh and R. Venugopal, Experimental and numerical analysis of flexural test of unfilled glass fiber reinforced polymer composite laminate, Mater. Today Proc., 5 (1) (2018) 184–192.Google Scholar
  17. [17]
    P. K. Bajpai, K. Ram, L. K. Gahlot and V. K. Jha, Fabrication of glass/jute/epoxy composite based industrial safety helmet, Mater. Today Proc., 5 (2) (2018) 8699–8706.Google Scholar
  18. [18]
    M. Indra Reddy, M. Anil Kumar and C. Rama Bhadri Raju, Tensile and flexural properties of jute, pineapple leaf and glass fiber reinforced polymer matrix hybrid composites, Mater. Today Proc., 5 (1) (2018) 458–462.Google Scholar
  19. [19]
    M. K. Gupta and R. Singh, Flexural and dynamic mechanical analysis (DMA) of polylactic acid (PLA) coated sisal fibre reinforced polyester composite, Mater. Today Proc., 5 (2) (2018) 6109–6114.Google Scholar
  20. [20]
    H. Ullah, A. R. Harland and V. V. Silberschmidt, Experimental and numerical analysis of damage in woven gfrp composites under large-deflection bending, Appl. Compos. Mater., 19 (5) (2012) 769–783.Google Scholar
  21. [21]
    E. Soliman, U. Kandil and M. R. Taha, Improved strength and toughness of carbon woven fabric composites with functionalized MWCNTs, Materials (Basel)., 7 (6) (2014) 4640–4657.Google Scholar
  22. [22]
    G. Gruber and S. Wartzack, Three point bending analyses of short fiber reinforced thermoplastics: A comparison, SAS Tech., 12 (1) (2013) 1–8.Google Scholar
  23. [23]
    M. Rafiquzzaman, M. Islam, H. Rahman, S. Talukdar and N. Hasan, Mechanical property evaluation of glass-jute fiber reinforced polymer composites, Polym. Adv. Technol., 27 (10) (2016) 1308–1316.Google Scholar
  24. [24]
    C. Dong, M. Kalantari and I. J. Davies, Robustness for unidirectional carbon/glass fibre reinforced hybrid epoxy composites under flexural loading, Compos. Struct., 128 (2015) 354–362.Google Scholar
  25. [25]
    L. Valarinho, J. Sena-Cruz, J. R. Correia and F. A. Branco, Numerical simulation of the flexural behaviour of composite glass-GFRP beams using smeared crack models, Compos. Part B Eng., 110 (2017) 336–350.Google Scholar
  26. [26]
    M. V. Ramana and S. Ramprasad, Experimental investigation on jute/carbon fibre reinforced epoxy based hybrid composites, Mater. Today Proc., 4 (8) (2017) 8654–8664.Google Scholar
  27. [27]
    A. P. Abhishek, B. S. K. Gowda, G. L. E. Prasad and R. Velmurugan, Probabilistic study of tensile and flexure properties of untreated jute fiber reinforced polyester composite, Mater. Today Proc., 4 (10) (2017) 11050–11055.Google Scholar
  28. [28]
    R. A. Braga and P. A. A. Magalhaes, Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites, Mater. Sci. Eng. C, 56 (2015) 269–273.Google Scholar
  29. [29]
    H. Sezgin and O. B. Berkalp, The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites, J. Ind. Text., 47 (3) (2017) 283–296.Google Scholar
  30. [30]
    W. Hongxiao, D. Yugang, A. Dilimulati and Z. Xiaohui, Design optimization of CFRP stacking sequence using a multi-island genetic algorithms under low-velocity impact loads, J. of Wuhan University of Technology-Mater. Sci. Ed., 32 (3) 720–725.Google Scholar
  31. [31]
    E. Sevkat, B. Liaw and F. Delale, Drop-weight impact response of hybrid composites impacted by impactor of various geometries, Mater. Des., 52 (2013) 67–77.Google Scholar
  32. [32]
    F. Sarasini et al., Composites: Part B drop-weight impact behaviour of woven hybrid basalt - carbon / epoxy composites, Compos. Part B, 59 (2014) 204–220.Google Scholar
  33. [33]
    A. Gopinath, M. Senthil Kumar and A. Elayaperumal, Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices, Procedia Eng., 97 (2014) 2052–2063.Google Scholar
  34. [34]
    K. Sabeel Ahmed, S. Vijayarangan and A. Kumar, Low velocity impact damage characterization of woven jute— glass fabric reinforced isothalic polyester hybrid composites, J. of Reinforced Plastics and Composites, 26 (10) (2007) 959–976.Google Scholar
  35. [35]
    B. S. Sugun and R. M. V. G. K. Rao, Low-velocity impact characterization of glass, carbon and kevlar composites using repeated drop tests, J. of Reinforced Plastics and Composites, 23 (15) (2004).Google Scholar
  36. [36]
    S. Datta, A. V. Krishna and R.M.V.G.K. Rao, Low velocity impact damage tolerance studies material, process and test parameters, J. of Reinforced Plastics and Composites, 23 (3) (2016).Google Scholar
  37. [37]
    J. Zhang, B. L. Fox, D. Gao and A. W. Stevenson, Inspection of drop-weight impact damage in woven CFRP laminates fabricated by different processes, J. of Composite Materials, 43 (19) 1939–1946.Google Scholar
  38. [38]
    ASTM D 7264, Standard test method for flexural properties of polymer matrix composite materials, ASTM Stand., i (2007) 1–11.Google Scholar
  39. [39]
    ASTM D7136, Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event, ASTM Int. Des. D, i (C) (2005) 1–16.Google Scholar
  40. [40]
    E. Soliman, M. Al-Haik and M. R. Taha, On and off-axis tension behavior of fiber reinforced polymer composites incorporating multi-walled carbon nanotubes, J. Compos. Mater., 46 (14) (2012) 1661–1675.Google Scholar
  41. [41]
    D. Gay, S. V. Hao and S. W. Tsai, Ply properties, Compos. Mater. Des. Appl. (2003) 24.Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Aakash Ali
    • 1
  • Muhammad Ali Nasir
    • 1
    Email author
  • Muhammad Yasir Khalid
    • 2
  • Saad Nauman
    • 3
  • Khubab Shaker
    • 4
  • Shahab Khushnood
    • 1
  • Khurram Altaf
    • 5
  • Muhammad Zeeshan
    • 4
  • Azhar Hussain
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Department of Mechanical EngineeringUniversity of Management and TechnologyLahorePakistan
  3. 3.Department of Material ScienceInstitute of Space TechnologyIslamabadPakistan
  4. 4.National Textile UniversityPunjabPakistan
  5. 5.Mechanical Engineering DepartmentUniversiti Teknologi PetronasBandar Seri IskandarMalaysia

Personalised recommendations