Journal of Mechanical Science and Technology

, Volume 33, Issue 8, pp 3905–3911 | Cite as

Compressive quasistatic and dynamic behavior of SiC/ZrO2 aluminum-based nanocomposite

  • Jamshid NematiEmail author
  • Meysam Toosian
  • Seyed Shahin Banisdar
  • Seyed Mahdi Ahmadpour


This research investigated the mechanical properties of aluminum-based nanocomposite. The spark plasma sintering method was adopted to fabricate the samples. The nanoparticles and the base metal powder were mechanically mixed in four volumetric ratios under an argon-gas-neutral atmosphere using a planetary ball milling machine. The dynamic and static compressive behaviors of the samples were studied under three different loading rates, and the microhardness of the specimens was measured. Results revealed significant improvements in microhardness, quasistatic, and the dynamic compressive strength, which can be attributed to several mechanisms, including the load transfer effect, Hall-Patch strengthening, Orowan strengthening, coefficient of thermal expansion, and elastic modulus mismatch effects. The most effective mixture was found to be 92 vol% of Al, 4 vol% of SiC, and 4 vol% of ZrO2. This combination of raw materials led to ultimate strengths of 204.517, 396.825, and 572.624 MPa at strain rates of 0.33, 13.33, and 2000 s−1, respectively.


Aluminum-based nanocomposite High strain rate Orowan strengthening mechanism Spark plasma sintering (SPS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    U. Cocen and K. Onel, Failure criteria in fiber reinforced polymer composites, Journal Composite Science and Technolog, 62 (2002) 275–283.CrossRefGoogle Scholar
  2. [2]
    W. Callister and D. Rethwisch, Fundamentals of Materials Science and Engineering, 3rd Ed., John Wiley & Sons Inc., USA (2008).Google Scholar
  3. [3]
    A. Slipenyuk, V. Kuprin, Y. Milman, J. E. Spowart and D. B. Miracle, The effect of matrix to reinforcement particle size ratio (PSR) on the microstructure and mechanical properties of a P/M processed AlCuMn/SiCp MMC, Mater. Sci. Eng. A, 381 (2004) 165–170.CrossRefGoogle Scholar
  4. [4]
    S. Kumai, J. Hu, Y. Higo and S. Nunomura, Effects of dendrite cell size and particle distribution on the near-threshold fatigue crack growth behaviour of cast Al- SiCp composites, Acta. Mater, 44 (1996) 2249–2257.CrossRefGoogle Scholar
  5. [5]
    R. Baccino and F. Moret, Numerical modeling of powder metallurgy processes, Mater. Design, 21 (2000) 359–364.CrossRefGoogle Scholar
  6. [6]
    Y. M. Youssef, R. J. Dashwood and P. D. Lee, Effect of clustering on particle pushing and solidification behavior in TiB2 reinforced aluminum PMMCs, Composites: Part A, 36 (2005) 747–763.CrossRefGoogle Scholar
  7. [7]
    K. Rajeswari, U. S. Hareesh, R. Subasri, D. Chakravarty and R. Johnson, Comparative evaluation of spark plasma (SPS), microwave (MWS), two stage sintering (TSS) and conventional sintering (CRH) on the densification and micro structural evolution of fully stabilized zirconia ceramics, Science of Sintering, 42 (2010) 259–267.CrossRefGoogle Scholar
  8. [8]
    D. Liu, Y. Xiong, Y. Li, T. D. Topping, Y. Zhou, C. Haines, J. Paras, D. Martin, D. Kapoor, J. M. Schoenung and E. J. Lavernia, Spark plasma sintering of nanostructured aluminum: Influence of tooling material on microstructure, Metallurgical and Materials Transactions A, 44 (2013) 1908–1916.CrossRefGoogle Scholar
  9. [9]
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel and M. Herrmann, Field-assisted sintering technology/spark plasma sintering: mechanisms, materials, and technology developments, Advanced Engineering Materials, 16 (7) (2014) 830–849.CrossRefGoogle Scholar
  10. [10]
    H. Kwon, D. H. Park, Y. Park, J. F. Silvain, A. Kawasaki and Y. Park, Spark plasma sintering behavior of pure aluminum depending on various sintering temperatures, Met. Mater. Int., 16 (2010) 71–75.CrossRefGoogle Scholar
  11. [11]
    F. Zhang, M. Reich, O. Kessler and E. Burkel, The potential of rapid cooling spark-plasma sintering for metallic materials, Materials Today, 16 (2013) 192–197.CrossRefGoogle Scholar
  12. [12]
    R. Casati, Aluminum Matrix Composites Reinforced with Alumina Nanoparticles, Springer, New York (2016).CrossRefGoogle Scholar
  13. [13]
    E. Ghasali, A. Pakseresht, F. Safari-kooshali, M. Agheli and T. Ebadzadeh, Investigation on microstructure and mechanical behavior of Al-ZrB2 composite prepared by microwave and spark plasma sintering, Materials Science & Engineering A, 627 (2015) 27–30.CrossRefGoogle Scholar
  14. [14]
    H. Ramezanalizadeh, M. Emamy and M. Shokouhimehr, A novel aluminum based nanocomposite with high strength and good ductility, Journal of Alloys and Compounds, 649 (2015) 461–473.CrossRefGoogle Scholar
  15. [15]
    M. Abdellahi, M. Bahmanpourb and M. Bahmanpourc, Laminating; the best way to improve Charpy impact energy of nanocomposites, Ceramics International, 40 (2014) 16115–16125.CrossRefGoogle Scholar
  16. [16]
    D. Sai, C. Kishore, K. Prahlada Rao and A. Mahamani, Fabrication and characterisation of in-situ Al-TiC composite, Int. J. Mech. Eng. Techn, 4 (2013) 109–114.Google Scholar
  17. [17]
    A. Atrian, G. H. Majzoobi, M. H. Enayati and H. Bakhtiari, A comparative study on hot dynamic compaction and quasistatic hot pressing of A17075/SiCnp nanocomposite, Advanced Powder Technology, 26 (2015) 73–82.CrossRefGoogle Scholar
  18. [18]
    A. Rahimnejad Yazdi, H. Baharvandi, H. Abdizadeh, J. Purasa, H. Ahmadi and A. Fathi, Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites, Materials and Design, 37 (2012) 251–255.CrossRefGoogle Scholar
  19. [19]
    G. H. Majzoobi, A. Atrian and M. K. Pipelzadeh, Effect of densification rate on consolidation and properties of A17075-B4C composite powder, PowderMetallurgy, 58 (4) (2015) 281–288.Google Scholar
  20. [20]
    M. Mansoor and M. Shahid, Carbon nanotube-reinforced aluminum composite produced by induction melting, Journal of Applied Research and Technology, 14 (2016) 215–224.CrossRefGoogle Scholar
  21. [21]
    R. D. Haghighi, Effect of ECAP and extrusion on particle distribution in Al-nano-Al2O3 composite, Bull. Mater. Sci., 38 (5) (2015) 1205–1212.CrossRefGoogle Scholar
  22. [22]
    P. C. Angelo and R. Subramanian, Powder Metallurgy: Science, Technology and Applications, New Dehli (2009).Google Scholar
  23. [23]
    C. Recep, P. Muharrem and O. P. Zühtü, The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-MgO composites, Materials Research, 15 (2012) 1057–1063.CrossRefGoogle Scholar
  24. [24]
    P. K. Ghost and S. Ray, Influence of process parameters on the porosity content in Mg-alumina cast particulate composite produced by vortex method, Transactions of the American Foundry Society, 214 (1988) 775–782.Google Scholar
  25. [25]
    R. Casati and M. Vedani, Metal matrix composites reinforced by nano-particles: A review, Metals, 4 (2014) 65–83.CrossRefGoogle Scholar
  26. [26]
    C. T. Wei, E. Vitali, F. Jian, S. W. Du, D. J. Benson, K. S. Vecchio, N. N. Thadhani and M. A. Meyers, Quasi-static and dynamic response of explosively consolidated meta-laluminum powder mixtures, Acta Materialia, 60 (2012) 1418–1432.CrossRefGoogle Scholar
  27. [27]
    Y. L. Dong, F. M. Xu, X. L. Shi, C. Zhang, Z. J. Zhang, J. M. Yang and Y. Tan, Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites, Materials Science and Engineering A, 504 (2009) 49–54.CrossRefGoogle Scholar
  28. [28]
    A. Erma, J. Groza, X. Li, H. Choi and G. Cao, Nanoparticle effects in cast Mg-1 wt% SiC nano-composites, Materials Science & Engineering A, 558 (2012) 39–43.CrossRefGoogle Scholar
  29. [29]
    Z. Zhang and D. L. Chen, Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites, Materials Science and Engineering A, 483–484 (15) (2008) 148–152.Google Scholar
  30. [30]
    A. Sanaty-Zadeh, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect, Materials Science and Engineering A, 531 (2012) 112–118.CrossRefGoogle Scholar
  31. [31]
    A. Saboori, S. K. Moheimani, M. Pavese, C. Badini and P. Fino, New nanocomposite materials with improved mechanical strength and tailored coefficient of thermal expansion for electro-packaging applications, Metals, 7 (2017) 536.CrossRefGoogle Scholar
  32. [32]
    A. Canakci, Microstructure and abrasive wear behavior of B4C particle reinforced 2014 Al matrix composites, J. Mater. Sci., 46 (2011) 2805–2813.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Jamshid Nemati
    • 1
    Email author
  • Meysam Toosian
    • 2
  • Seyed Shahin Banisdar
    • 2
  • Seyed Mahdi Ahmadpour
    • 2
  1. 1.Mechanical Engineering Department, Faculty of EngineeringBu-Ali Sina UniversityHamadanIran
  2. 2.Department of Mechanical EngineeringIslamic Azad UniversityHamedanIran

Personalised recommendations