Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 6, pp 3039–3050 | Cite as

In vivo cell tracking using speckle image correlation technique employing high frame rate confocal laser scanning microscopy in a mouse skin model

  • Jae Sung Park
  • Sung Hoon Bae
  • Tae Ho Jun
  • Cheol Woo Park
  • Ho LeeEmail author
Article
  • 2 Downloads

Abstract

Particle image velocimetry is a technique for analyzing and visualizing collective velocity using sequential images of moving particles. However, there still exist tracer seeding problems in in vivo measurement applications. For overcoming this limitation cell tracking based on speckle image cross-correlation method to confocal microscopy, it is possible to analyze the velocity of cells in blood flow without injecting exogenous particles. Using a standard rate of 30 fps allows tracking of hematocytes near 200μm / sec, but this is insufficient at only moderately higher flow rates due to the inclusion of individual cells moving at velocities well above the average. It is necessary to overcome this limitation by using higher frame rates of imaging for a precise blood stream analysis. We performed in vivo cell tracking based on speckle image cross-correlation acquired at rates of 30, 90 and 180 fps using a confocal microscope. We found that the more than 5-fold increase in frame rate achieves a similar low rate of errors for blood flow containing cells moving at an average speed of up to to 1 mm/sec.

Keywords

Confocal microscopy Biology and medicine Speckle image cross-correlation Cell tracking Hematocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was conducted under the industrial infrastructure program of laser industry support, which is funded by the Ministry Of Trade, Industry & Energy (MOTIE, Korea, N0000598).

References

  1. [1]
    L. Dinetenfass, Blood rheology in pathogenesis of the coronary heart disease, American Heart Jounal, 77 (1969) 139–147.CrossRefGoogle Scholar
  2. [2]
    Y. I. I. I. C. Abe, Viscosity of blood and plasma in various diseases, Theoretical and Clinical Hemorheology (1971) 326–332.Google Scholar
  3. [3]
    R. Lima, S. Wada, K. Tsubota and T. Yamaguchi, Confocal micro-PIV measurements of three-dimensional profiles of cell suspension flow in a square microchannel, Measurement Science and Technology, 17 (2006) 797–808.CrossRefGoogle Scholar
  4. [4]
    B. Tsinamdzvrishvili, N. Beritashvili and G. Mchedlishvili, Further insight into blood rheolooical disturbances in essential hypertension, Clincal Hemorheology and Microcicula-tion, 15 (1995) 697–705.Google Scholar
  5. [5]
    A. I. Y. Isogai, K. Michizuki and M. Abe, Hemorheological studies on the pathogenesis of diabetic microangiopathy, Thrombosis Research, 8 (1976) 17–24.CrossRefGoogle Scholar
  6. [6]
    P. R. Humphrey, G. H. du Boulay, J. Marshall, T. C. Pearson, R. W. Ross Russell, N. G. P. Slater, L. Symon, G. Wether-ley-Mein and E. Zilkha, Viscosity, cerebral blood flow and haematocrit in patients with paraproteinaemia, Acta Neurologica, 61 (1980) 201–209.CrossRefGoogle Scholar
  7. [7]
    J. Y. Lee, H. S. Ji and S. J. Lee, Micro-PIV measurements of blood flow in extraembryonic blood vessels of chicken embryos, Physiological Measurement, 28 (2007) 1149–1162.CrossRefGoogle Scholar
  8. [8]
    Y. Sugii, S. Nishio and K. Okamoto, In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion, Physiological Measurement, 23 (2002) 403–416.CrossRefGoogle Scholar
  9. [9]
    J. S. Park, C. K. Choi and K. D. Kihm, Optically sliced mi-cro-PIV using confocal laser scanning microscopy (CLSM), Experiments in Fluids, 37 (2004) 105–119.CrossRefGoogle Scholar
  10. [10]
    S. J. Lee, J. H. Park, J. J. Kim and E. Yeom, Quantitative analysis of helical flow with accuracy using ultrasound speckle image velocimetry: Vitro and in vivo feasibility studies, Ultrasound in Medicine & Biology, 44 (2018) 657–669.CrossRefGoogle Scholar
  11. [11]
    X. Zhou, C. H. Leow, E. Rowland, K. Riemer, J. M. Rubin, P. D. Weinberg and M.-X. Tang, 3-D velocity and volume flow measurement in vivo using speckle decorrelation and 2D high-frame-rate contrast-enhanced ultrasound, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65 (2018) 2233–2244.CrossRefGoogle Scholar
  12. [12]
    H. Kim, J. Hertzberg and R. Shandas, Development and validation of echo PIV, Experiments in Fluids, 36 (2004) 455–462.CrossRefGoogle Scholar
  13. [13]
    J. Voorneveld, P. Kruizinga, H. J. Vos, F. J. Gijsen, E. G. Jebbink, A. F. van der Steen, N. de Jong and J. G. Bosch, Native blood speckle vs ultrasound contrast agent for particle image velocimetry with ultrafast ultrasound-in vitro experiments, IEEE International Ultrasonics Symposium (2016) 1–4.Google Scholar
  14. [14]
    J. Carlson and R. Ing, Ultrasonic speckle correlation imaging of 2D particle velocity profiles in multiphase flows, Flow Measurement and Instrumentation, 14 (2003) 193–200.CrossRefGoogle Scholar
  15. [15]
    L. Sandrin, S. Manneville and M. Fink, Ultrafast two-dimensional ultrasonic speckle velocimetry: A tool in flow imaging, Applied Physics Letters, 78 (2001) 1155–1157.CrossRefzbMATHGoogle Scholar
  16. [16]
    E. Yeom, K.-H. Nam, D.-G. Paeng and S. J. Lee, Improvement of ultrasound speckle image velocimetry using image enhancement techniques, Ultrasonics, 54 (2014) 205–216.CrossRefGoogle Scholar
  17. [17]
    S. M. Choi, W. H. Kim, D. Cote, C. W. Park and H. Lee, Blood cell assisted in vivo particle image velocimetry using the confocal laser scanning microscope, Opt. Express, 19 (2011) 4357–4368.CrossRefGoogle Scholar
  18. [18]
    M. Unekawa, M. Tomita, Y. Tomita, H. Toriumi, K. Mi-yaki and N. Suzuki, RBC velocities in single capillaries of mouse and rat brains are the same, despite 10-fold difference in body size, Brain Research, 1320 (2010) 69–73.CrossRefGoogle Scholar
  19. [19]
    K. Ivanov, M. Kalinina and Y. I. Levkovich, Blood flow velocity in capillaries of brain and muscles and its physiological significance, Microvascular Research, 22 (1981) 143–155.CrossRefGoogle Scholar
  20. [20]
    H. N. Mayrovitz, Skin capillary metrics and hemodynamics in the hairless mouse, Microvascular Research, 43 (1992) 46–59.CrossRefGoogle Scholar
  21. [21]
    Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. van Gemert and J. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Optics Letters, 22 (1997) 1119–1121.CrossRefGoogle Scholar
  22. [22]
    E. Parzy, S. Miraux, F. Jean-Michel and E. Thiaudière, In vivo quantification of blood velocity in mouse carotid and pulmonary arteries by ECG-triggered 3D time-resolved magnetic resonance angiography, NMR in Biomedicine, 22 (2009) 532–537.CrossRefGoogle Scholar
  23. [23]
    K. Kellam and P. Altmeyer, Capillary blood cell velocity in human skin capillaries located perpendicularly to the skin surface: measured by a new laser Doppler anemometer, Mi-crovascular Research, 52 (1996) 188–192.Google Scholar
  24. [24]
    B. Fagrell, A. Fronek and M. Intaglietta, A microscope-television system for studying flow velocity in human skin capillaries, American Journal of Physiology-Heart and Circulatory Physiology, 233 (1977) H318–H321.CrossRefGoogle Scholar
  25. [25]
    T. Rimmer, Retinal blood velocity in patients with leukoc-cyte disorders, Acrhives of Ophthalmology, 106 (1988) 1548–1552.Google Scholar
  26. [26]
    P. K. S. Choi, R. Boutilier, M. Y. Kim, Y. J. Lee and H. Lee, Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second, Opt. Express, 21 (2013) 23611–23618.CrossRefGoogle Scholar
  27. [27]
    R. J. Adrian and J. Westerweel, Particle Image Velocimetry, Cambridge University Press (2011).zbMATHGoogle Scholar
  28. [28]
    R. Keane, R. Adrian and Y. Zhang, Super-resolution particle imaging velocimetry, Measurement Science and Technology, 6 (1995) 754.CrossRefGoogle Scholar
  29. [29]
    D. P. Hart, PIV error correction, Experiments in Fluids, 29 (2000) 13–22.CrossRefGoogle Scholar
  30. [30]
    H. Huang, D. Dabiri and M. Gharib, On errors of digital particle image velocimetry, Measurement Science and Technology, 8 (1997) 1427.CrossRefGoogle Scholar
  31. [31]
    R. J. A. Richard and D. Keane, Theory of cross-correlation analysus of PIV image, Applied Scientific Research, 49 (1992) 191–215.CrossRefGoogle Scholar
  32. [32]
    J. C. E. T. Cochrane and A. H. G. Love, Laser Doppler measurement of blood velocity in microvessels, Medical & Biological Engineering & Computing, 19 (1981) 589–596.CrossRefGoogle Scholar
  33. [33]
    T. E. M. Z. Chen, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert and J. S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography, Optics Letters, 22 (1997) 1119–1121.CrossRefGoogle Scholar
  34. [34]
    J. S. Y. Seki, T. Oyama and J. Yamamoto, Fiber-optic la-ser-Doppler anemometer microscope applied to the cerebral microcirculation in rats, Biorheology, 33 (1996) 463–470.Google Scholar
  35. [35]
    W. H. Kim, C. I. Kim, S. W. Lee, S. H. Lim, C. W. Park, H. Lee and M. K. Park, Particle image velocimetty of the blood flow in a micro-channel using the confocal laser scanning microscope, J. Opt. Soc. Korea, 14 (2010) 42–48.CrossRefGoogle Scholar
  36. [36]
    C. C. C. Irace, F. Scavelli, M. S. De Franceschi, T. Esposito and A. Gnasso, Blood viscosity in subjects with normogly-cemia and prediabetes, Diabetes Care, 37 (2014) 488–492.CrossRefGoogle Scholar
  37. [37]
    C. Li, R. K. Pastila, C. Pitsillides, J. M. Runnels, M. Puor-is’haag, D. Côté and C. P. Lin, Imaging leukocyte trafficking in vivo with two-photon-excited endogenous tryptophan fluorescence, Opt. Express, 18 (2010) 988–999.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Jae Sung Park
    • 1
  • Sung Hoon Bae
    • 1
  • Tae Ho Jun
    • 1
  • Cheol Woo Park
    • 2
  • Ho Lee
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Mechanical Engineering, Graduate SchoolKyungpook National UniversityDaeguKorea
  2. 2.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea
  3. 3.Laser Application CenterKyungpook National UniversityDaeguKorea
  4. 4.Institute for Nanophotonics ApplicationsKyungpook National UniversityDaeguKorea

Personalised recommendations