Journal of Mechanical Science and Technology

, Volume 33, Issue 6, pp 3031–3038 | Cite as

Pressure effect on NO emission in methane/air lean-premixed flames

  • Sungwoo ParkEmail author


Nitrogen oxides (NOx) from combustion system are one of major pollutants which causes photochemical smog and ozone layer depletion. The interest in lean-premixed combustion has increased to reduce NOx emissions in the industrial gas-turbine as a suitable reduction strategy. The present study investigates methane/air premixed flames with a detailed chemical kinetic model to better understand the pressure effect on NOx formation. A detailed chemical kinetic model is developed by merging AramcoMech 3.0 and recently proposed nitrogen chemistry. The proposed mechanism is first validated against experimental data, including laminar flame speed, ignition delay times, and NO concentration in premixed flames at various pressures. Freely propagating methane/air lean-premixed flames are simulated over a pressure range 1–20 atm and equivalence of 0.5, 0.55 and 0.6. Prompt NO formation is dominant within a narrow heat release region and thermal NO production pathways lead to the total NO formation in the postflame zone. Prompt NO formation rate increases between 1 and 5 atm and then decreases with further increasing pressure due to pressure dependent NCN formation rates. On the other hand, the formation rate of NO in the postflame zone increases monotonically as pressure increases.


Lean-premixed flame Gas turbine NO formation NCN Detailed chemical kinetic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by 2018 Korea Aerospace University Faculty Research Grant.


  1. [1]
    S. M. Sarathy, P. Oßwald, N. Hansen and K. Kohse-Höinghaus, Alcohol combustion chemistry, Progress in Energy and Combustion Science, 44 (2014) 40–102.CrossRefGoogle Scholar
  2. [2]
    S. Park, S. H. Chung, T. L. and S. M. Sarathy, Combustion characteristics of C5 alcohols and a skeletal mechanism for homogeneous charge compression ignition combustion simulation, Energy & Fuels, 29 (2015) 7584–7594.CrossRefGoogle Scholar
  3. [3]
    S. Park, O. Mannaa, F. Khaled, R. bougacha, M. S. Mansour, A. Farooq, S. H. Chung and S. M. Sarathy, A comprehensive experimental and modeling study of 2-methylbutanol combustion, Combustion and Flame, 162 (2015) 2166–2176.CrossRefGoogle Scholar
  4. [4]
    D. Han, A. M. Ickes, D. N. Assanis, Z. Huang and S. V. Bohac, Attainment and load extension of high-efficiency premixed low-temperature combustion with dieseline in a compression ignition engine, Energy & Fuels, 24 (2010) 3517–3525.CrossRefGoogle Scholar
  5. [5]
    K. Khidr, Y. A. Eldrainy and M. M. El-Kassaby, Towards lower gas turbine emissions: Flameless distributed combustion, Renewable and Sustainable Energy Reviews, 67 (2017) 1237–1266.CrossRefGoogle Scholar
  6. [6]
    S. M. Correa, A review of NOx formation under gas-turbine combustion conditions, Combustion Science and Technology, 87 (1993) 329–362.CrossRefGoogle Scholar
  7. [7]
    T. Lieuwen, H. Torres, C. Johnson and B. T. Zinn, A mechanism of combustion instability in lean premixed gas turbine combustors, Journal of Engineering for Gas Turbines and Power, 123 (2001) 182–189.CrossRefGoogle Scholar
  8. [8]
    E.-S. Cho and S. H. Chung, Numerical evaluation of NOx mechanisms in methane-air counterflow premixed flames, Journal of Mechanical Science and Technology, 23 (2009) 659–666.CrossRefGoogle Scholar
  9. [9]
    P. Zahedi and K. Yousefi, Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures, Journal of Mechanical Science and Technology, 28 (2014) 377–386.CrossRefGoogle Scholar
  10. [10]
    T. G. Van, J. J. Hwang, M. K. Kim and K. Y. Ahn, Feasibility study of ultra-low NOx gas turbine combustor using the RML combustion concept, Journal of Mechanical Science and Technology, 30 (2016) 5749–5757.CrossRefGoogle Scholar
  11. [11]
    I. G. Lim and J. Park, Flame characteristics and NO emission in methane/air-air counterflow premixed flames with applying FIR and FGR, Journal of Mechanical Science and Technology, 30 (2016) 3869–3876.CrossRefGoogle Scholar
  12. [12]
    D. Lee, J. Park, J. Jin and M. Lee, A simulation for prediction of nitrogen oxide emissions in lean premixed combustor, Journal of Mechanical Science and Technology, 25 (2011) 1871–1878.CrossRefGoogle Scholar
  13. [13]
    T. H. Nguyen, S. Kim, J. Park, S. Jung and S. Kim, CFDCRN validation study for NOx emission prediction in lean premixed gas turbine combustor, Journal of Mechanical Science and Technology, 31 (2017) 4933–4942.CrossRefGoogle Scholar
  14. [14]
    D. A. Sullivan, A simple gas turbine combustor NOx correlation including the effect of vitiated air, Journal of Engineering for Power, 99 (1977) 145–152.CrossRefGoogle Scholar
  15. [15]
    K. U. M. Bengtsson, P. Benz, R. Schäeren and C. E. Frouzakis, NyOx formation in lean premixed combustion of methane in a high-pressure jet-stirred reactor, Proceedings of the Combustion Institute, 27 (1998) 1393–1399.CrossRefGoogle Scholar
  16. [16]
    G. Leonard and J. Stegmaier, Development of an aeroderivative gas turbine dry low emissions combustion system, Journal of Engineering for Gas Turbines and Power, 116 (1994) 542.CrossRefGoogle Scholar
  17. [17]
    F. Biagioli and F. Güthe, Effect of pressure and fuel–air unmixedness on NOx emissions from industrial gas turbine burners, Combustion and Flame, 151 (2007) 274–288.CrossRefGoogle Scholar
  18. [18]
    C.-W. Zhou, Y. Li, U. Burke, C. Banyon, K. P. Somers, S. Ding, S. Khan, J. W. Hargis, T. Sikes, O. Mathieu, E. L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S. S. Vasu and H. J. Curran, An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements, Combustion and Flame, 197 (2018) 423–438.CrossRefGoogle Scholar
  19. [19]
    P. Glarborg, J. A. Miller, B. Ruscic and S. J. Klippenstein, Modeling nitrogen chemistry in combustion, Progress in Energy and Combustion Science, 67 (2018) 31–68.CrossRefGoogle Scholar
  20. [20]
    ANSYS 19.0 CHEMKIN-PRO, San Diego (2017).Google Scholar
  21. [21]
    W. Lowry, J. de Vries, M. Krejci, E. L. Petersen, Z. Serinyel, W. Metcalfe, H. J. Curran and G. Bourque, Laminar flame speed measurements and modeling of pure alkanes and alkane blends at elevated pressures, Journal of Engineering for Gas Turbines and Power, 133 (2011) 091501–091509.CrossRefGoogle Scholar
  22. [22]
    G. Rozenchan, D. L. Zhu, C. K. Law and S. D. Tse, Outward propagation, burning velocities, and chemical effects of methane flames up to 60 atm, Proceedings of the Combustion Institute, 29 (2002) 1461–1470.CrossRefGoogle Scholar
  23. [23]
    G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song W. C. Gardiner, V. V. Lissianski and Z. Qin,
  24. [24]
    U. Burke, K. P. Somers, P. O’Toole, C. M. Zinner, N. Marguet, G. Bourque, E. L. Petersen, W. K. Metcalfe, Z. Serinyel and H. J. Curran, An ignition delay and kinetic modeling study of methane, dimethyl ether, and their mixtures at high pressures, Combustion and Flame, 162 (2015) 315–330.CrossRefGoogle Scholar
  25. [25]
    F. H. V. Coppens, J. D. Ruyck and A. A. Konnov, Effects of hydrogen enrichment on adiabatic burning velocity and NO formation in methane + air flames, Experimental Thermal and Fluid Science, 31 (2007) 437–444.CrossRefGoogle Scholar
  26. [26]
    D. D. Thomsen, F. F. Kuligowski and N. M. Laurendeau, Modeling of NO formation in premixed, high-pressure methane flames, Combustion and Flame, 119 (1999) 307–318.CrossRefGoogle Scholar
  27. [27]
    L. V. Moskaleva and M. C. Lin, The spin-conserved reaction CH+N2U→H+NCN: A major pathway to prompt NO studied by quantum/statistical theory calculations and kinetic modeling of rate constant, Proceedings of the Combustion Institute, 28 (2000) 2393–2401.CrossRefGoogle Scholar
  28. [28]
    S. J. Klippenstein, M. Pfeifle, A. W. Jasper and P. Glarborg, Theory and modeling of relevance to prompt-NO formation at high pressure, Combustion and Flame, 195 (2018) 3–17.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.School of Aerospace and Mechanical EngineeringKorea Aerospace UniversityGoyangKorea

Personalised recommendations