Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 6, pp 3001–3009 | Cite as

Automated thermal conductivity measurement algorithm for the transient hot wire method

  • Kyungmin Kim
  • Joohyun Lee
  • Junemo KooEmail author
Article
  • 3 Downloads

Abstract

Even after more than 20 years of research, establishment of a nanofluid thermal conductivity enhancement mechanism is impeded by differences in research results among researchers. Thermal conductivity measurement results may differ considerably depending on the selection of the temperature history range used to estimate thermal conductivity. This range should be selected carefully considering factors such as the hot wire specifications and the applied heat, but comparisons between researchers’ choices have rarely been reported.

To resolve this problem, herein we present an algorithm that estimates test fluid thermal conductivity based upon the inputs of various hot wire specifications, wire resistance history, and applied voltage. We confirm that the proposed algorithm gives more accurate and precise results comparing with the cases of selecting the range based on solely on the determination coefficient R2 and is effective in eliminating data affected by the errors. The proposed method for fluid thermal conductivity measurement is robust to differences in measurement conditions including operator skill level, applied voltage, and hot wire specifications. It is expected that the discrepancies noted across the results of different research groups would be greatly reduced by adopting the proposed method.

Keywords

Nanofluids Thermal conductivity Transient hot-wire method Natural convection effect Signal processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. J. Healy, J. J. de Groot and J. Kestin, The theory of the transient hot-wire method for measuring thermal conductivity, Phys. B+C, 82 (1976) 392–408, Doi:  https://doi.org/10.1016/0378-4363(76)90203-5.CrossRefGoogle Scholar
  2. [2]
    W. Guo, G. Li, Y. Zheng and C. Dong, Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method, Thermochim. Acta., 661 (2018) 84–97, Doi:  https://doi.org/10.1016/J.TCA.2018.01.008.CrossRefGoogle Scholar
  3. [3]
    S. H. Lee and S. P. Jang, Note: Effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method, Rev. Sci. Instrum., 83 (2012) Doi:  https://doi.org/10.1063/1.4731727.
  4. [4]
    J. Lee, H. Lee, Y.-J. Baik and J. Koo, Quantitative analyses of factors affecting thermal conductivity of nanofluids using an improved transient hot-wire method apparatus, Int. J. Heat Mass Transf., 89 (2015) Doi:  https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.064.
  5. [5]
    D. Yoo, J. Lee, B. Lee, S. Kwon and J. Koo, Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus, Heat Mass Transf. (2017) Doi:  https://doi.org/10.1007/s00231-017-2144-y.Google Scholar
  6. [6]
    E. Cohen and L. Glicksman, Analysis of the transient hotwire method to measure thermal conductivity of silica aerogel: Influence of wire length, and radiation properties, J. Heat Transfer, 136 (2014) 041301, Doi:  https://doi.org/10.1115/1.4025921.CrossRefGoogle Scholar
  7. [7]
    H. Li, L. Wang, Y. He, Y. Hu, J. Zhu and B. Jiang, Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids, Appl. Therm. Eng., 88 (2015) 363–368, Doi:  https://doi.org/10.1016/J.APPLTHERMALENG.2014.10.071.CrossRefGoogle Scholar
  8. [8]
    S. Azarfar, S. Movahedirad, A. A. Sarbanha, R. Norouzbeigi and B. Beigzadeh, Low cost and new design of transient hotwire technique for the thermal conductivity measurement of fluids, Appl. Therm. Eng., 105 (2016) 142–150, Doi:  https://doi.org/10.1016/j.applthermaleng.2016.05.138.CrossRefGoogle Scholar
  9. [9]
    K. Fujiura, Y. Nakamoto, Y. Taguchi and Y. Nagasaka, Thermal conductivity measurements of semiclathrate hydrates and aqueous solutions of tetrabutylammonium bromide (TBAB) and tetrabutylammonium chloride (TBAC) by the transient hot-wire using parylene-coated probe, Fluid Phase Equilib., 413 (2016) 129–136, Doi:  https://doi.org/10.1016/J.FLUID.2015.09.024.CrossRefGoogle Scholar
  10. [10]
    A. Vatani, P. L. Woodfield and D. V. Dao, A miniaturized transient hot-wire device for measuring thermal conductivity of non-conductive fluids, Microsyst. Technol., 22 (2016) 2463–2466, Doi:  https://doi.org/10.1007/s00542-015-2574-8.CrossRefGoogle Scholar
  11. [11]
    Y. Ueki, T. Aoki, K. Ueda and M. Shibahara, Thermophysical properties of carbon-based material nanofluid, Int. J. Heat Mass Transf., 113 (2017) 1130–1134, Doi:  https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.008.CrossRefGoogle Scholar
  12. [12]
    M. J. Alam, M. A. Islam, K. Kariya and A. Miyara, Measurement of thermal conductivity of cis-1,1,1,4,4,4-hexafluoro-2-butene (R-1336mzz(Z)) by the transient hotwire method, Int. J. Refrig., 84 (2017) 220–227, Doi:  https://doi.org/10.1016/J.IJREFRIG.2017.08.014.CrossRefGoogle Scholar
  13. [13]
    Z. Aparna, M. M. Michael, S. K. Pabi and S. Ghosh, Diversity in thermal conductivity of aqueous Al2O3- and Agnanofluids measured by transient hot-wire and laser flash methods, Exp. Therm. Fluid Sci., 94 (2018) 231–245, Doi:  https://doi.org/10.1016/j.expthermflusci.2018.02.005.CrossRefGoogle Scholar
  14. [14]
    Y. Ueki, K. Ueda and M. Shibahara, Thermal conductivity of suspension fluids of fine carbon particles: Influence of sedimentation and aggregation diameter, Int. J. Heat Mass Transf., 127 (2018) 138–144, Doi:  https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.114.CrossRefGoogle Scholar
  15. [15]
    S. W. Hong, Y. T. Kang, C. Kleinstreuer and J. Koo, Impact analysis of natural convection on thermal conductivity measurements of nanofluids using the transient hot-wire method, Int. J. Heat Mass Transf., 54 (2011) 3448–3456, Doi:  https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.041.CrossRefzbMATHGoogle Scholar
  16. [16]
    H. W. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press, Oxford, UK (1959).zbMATHGoogle Scholar
  17. [17]
    J. W. Haarman, A contribution to the theory of the transient hot-wire method, Physica, 52 (1971) 605–619, Doi:  https://doi.org/10.1016/0031-8914(71)90165-0.CrossRefGoogle Scholar
  18. [18]
    J. H. Blackwell, The axial-flow error in the thermal-conductivity probe, Can. J. Phys., 34 (4) (1955) 412–417.CrossRefGoogle Scholar
  19. [19]
    Y. Nagasaka and A. Nagashima, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, J. Phys. E, 14 (1981) 1435–1440, Doi:  https://doi.org/10.1088/0022-3735/14/12/020.CrossRefGoogle Scholar
  20. [20]
    K. Mullen et al., DEoptim: An R package for global optimization by differential evolution, J. Stat. Softw., 40 (6) (2011) 1–26.CrossRefGoogle Scholar
  21. [21]
    E. W. Lemmon, M. L. Huber and M. O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 91, National Institute of Standards and Technology (2013).Google Scholar
  22. [22]
    F. P. Incropera et al., Fundamentals of Heat and Mass Transfer, John Wiley, Hoboken, NJ, USA (2007).Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringKyung Hee UniversityYonginKorea
  2. 2.Korea Research Institute of Standards and ScienceDaejeonKorea

Personalised recommendations