Journal of Mechanical Science and Technology

, Volume 33, Issue 6, pp 2985–2993 | Cite as

A parametric study on structural effects of hollow hybrid fin heat sinks in natural convection and radiation

  • Severianus S. G. R. Putra
  • Nico Setiawan Effendi
  • Kyoung Joon KimEmail author


This study investigates structural effects of hollow hybrid fin heat sinks (HHFHSs) under natural convection and radiation conducting parametric analysis. The HHFHS is a staggered array of hollow hybrid fins (HHFs) denoting hollow pin fins containing perforations near fin bases and integrated with radially-placed plate fins. CFD thermal models validated by measurements were utilized to explore structural effects of the HHFHS such as the fin spacing; number, width, and length of the radial plate fin; and the number of perforations. It is found that the surface area enhancement of the radial plate fin considerably improves the thermal performance of the HHFHS although it modestly deteriorates the mass-based performance. It is seen that the HHF spacing has stronger influence on the radiation heat transfer rate compared with other parameters. The result shows that the perforations enable internal channel flows resulting in an additional heat transfer enhancement.


Natural convection Hollow hybrid fin Heat sink Structural effect Radiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by a Research Grant of Pukyong National University (2017 year).


  1. [1]
    C. Alvin et al., Thermal analysis of extruded aluminum fin heat sink for LED cooling application, 2011 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) 2011 397–400.CrossRefGoogle Scholar
  2. [2]
    M. Cermak et al., Development of a passively cooled outdoor telecom power enclosure, Annu. IEEE Semicond. Therm. Meas. Manag. Symp. 2017 13–18.Google Scholar
  3. [3]
    E. M. Sparrow and S. B. Vemuri, Natural convection/radiation heat transfer from highly populated pin fin arrays, J. Heat Transfer, 107 (1) 1985 190–197.CrossRefGoogle Scholar
  4. [4]
    T. Aihara, S. Maruyama and S. Kobayakawa, Free convective/radiative heat transfer from pin-fin arrays with a vertical base plate (general representation of heat transfer performance), Int. J. Heat Mass Transf., 33 (6) 1990 1223–1232.CrossRefGoogle Scholar
  5. [5]
    A. Bar-Cohen, M. Iyengar and A. D. Kraus, Design of optimum plate-fin natural convective heat sinks, J. Electron. Packag., 125 (2) 2003 208.CrossRefGoogle Scholar
  6. [6]
    M. Iyengar and A. Bar-Cohen, Least-material optimization of vertical pin-fin, plate-fin, and triangular-fin heat sinks in natural convective heat transfer, ITherm’98. Sixth Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. (Cat. No.98CH36208) 1998 295–302.CrossRefGoogle Scholar
  7. [7]
    R. Bahadur and A. Bar-Cohen, Thermal design and optimization of natural convection polymer pin fin heat sinks, IEEE Trans. Components Packag. Technol., 28 (2) 2005 238–246.CrossRefGoogle Scholar
  8. [8]
    Y. Joo and S. J. Kim, Comparison of thermal performance between plate-fin and pin-fin heat sinks in natural convection, Int. J. Heat Mass Transf., 83 2015 345–356.CrossRefGoogle Scholar
  9. [9]
    D. Jang, S. H. Yu and K. S. Lee, Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications, Int. J. Heat Mass Transf., 55 (4) 2012 515–521.CrossRefzbMATHGoogle Scholar
  10. [10]
    S. H. Yu, D. Jang and K. S. Lee, Effect of radiation in a radial heat sink under natural convection, Int. J. Heat Mass Transf., 55 (1-3) 2012 505–509.CrossRefzbMATHGoogle Scholar
  11. [11]
    D. Sahray et al., Study and optimization of horizontal-base pin-fin heat sinks in natural convection and radiation, J. Heat Transfer, 132 (1) 2010 012503.CrossRefGoogle Scholar
  12. [12]
    D. Sahray, G. Ziskind and R. Letan, Scale-up and generalization of horizontal-base pin-fin heat sinks in natural convection and radiation, J. Heat Transfer, 132 (11) 2010 112502.CrossRefGoogle Scholar
  13. [13]
    K. Lampio and R. Karvinen, A new method to optimize natural convection heat sinks, Heat Mass Transf., 54 (8) 2018 2571–2580.CrossRefGoogle Scholar
  14. [14]
    A. Shadlaghani et al., Optimization of triangular fins with/without longitudinal perforate for thermal performance enhancement, J. Mech. Sci. Technol., 30 (4) 2016 1903–1910.CrossRefGoogle Scholar
  15. [15]
    M. Mardani and M. R. Salimpour, Optimization of triangular microchannel heat sinks using constructal theory, J. Mech. Sci. Technol., 30 (10) 2016 4757–4764.CrossRefGoogle Scholar
  16. [16]
    H. Kim, K. J. Kim and Y. Lee, Thermal performance of smart heat sinks for cooling high power LED modules, 13th Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. 2012 962–967.Google Scholar
  17. [17]
    K. J. Kim, Performance of hybrid fin heat sinks for thermal control of light emitting diode lighting modules, J. Electron. Packag., 136 (1) 2014 011002.CrossRefGoogle Scholar
  18. [18]
    K. J. Kim, Orientation effects on the performance of natural convection cooled hybrid fins, 20th Int. Work. Therm. Investig. ICs Syst. 2014 1–3.Google Scholar
  19. [19]
    N. S. Effendi and K. J. Kim, Orientation effects on natural convective performance of hybrid fin heat sinks, Appl. Therm. Eng., 123 2017 527–536.CrossRefGoogle Scholar
  20. [20]
    R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, Taylor & Francis (1992).Google Scholar
  21. [21]
    ANSYS, ANSYS FLUENT: User’s Guide, Canonsburg (2016).Google Scholar
  22. [22]
    K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics, Engineering Education System (2000).Google Scholar
  23. [23]
    F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley (2007).Google Scholar
  24. [24]
    R. W. Fox, A. T. Macdonald and P. J. Pritchard, Introduction to Fluid Mechanics, John Wiley (2004).Google Scholar
  25. [25]
    K. S. Al-Athel, A computational methodology for assessing the thermal behavior of metal foam heat sinks, Appl. Therm. Eng., 111 2017 884–893.CrossRefGoogle Scholar
  26. [26]
    J. Taylor, Introduction to Error Analysis, the Study of Uncertainties in Physical Measurements, 2nd Ed., University Science Books (1997).Google Scholar
  27. [27]
    R. J. Moffat, Describing the uncertainties in experimental results, Exp. Therm. Fluid Sci., 1 (1) 1988 3–17.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Severianus S. G. R. Putra
    • 1
  • Nico Setiawan Effendi
    • 1
  • Kyoung Joon Kim
    • 1
    Email author
  1. 1.Dept. of Mechanical Design Eng.Pukyong National UniversityBusanKorea

Personalised recommendations