Journal of Mechanical Science and Technology

, Volume 33, Issue 6, pp 2949–2955

# Thermodynamics second law analysis for MHD boundary layer flow and heat transfer caused by a moving wedge

• Hamza Berrehal
Article

## Abstract

An analytical analysis has been carried out to investigate the second law of thermodynamics in magnetohydrodynamic (MHD) boundary layer flow and heat transfer by moving wedge. The governing PDEs of momentum, energy, and entropy generation are converted into nonlinear ODEs via similarity variables and then solved analytically using the optimal homotopy asymptotic method. The expression of entropy generation number is obtained in dimensionless form. Results revealed that the minimum entropy production is achieved when the wedge moves in the opposite direction to the free stream (for the negative values of velocity ratio parameter λ). Moreover, the magnetic field influences the increase in entropy production.

## Keywords

Entropy generation Moving wedge Magnetohydrodynamic (MHD) flow Optimal homotopy asymptotic method (OHAM)

## References

1. [1]
V. M. Falkner and S. W. Skan, Some approximate solutions of the boundary layer equations, Phil. Mag., 12 (1931) 865–896.
2. [2]
L. Howarth, On the solution of the laminar boundary layer equations, Proc. R. Soc. Lond. A, 164 (1938) 547–579.
3. [3]
F. M. White, Viscous Fluid Flow, 2nd Ed., New York: McGraw-Hill (1991).242-249.Google Scholar
4. [4]
H. Bararnia, E. Ghasemi, S. Soleimani, A. R. Ghotbi and D. D. Ganji, Solution of the Falkner–Skan wedge flow by HPM–Pade’ method, Advances in Engineering Software, 43 (1) (2012) 44–52.
5. [5]
S. Abbasbandy and T. Hayat, Solution of the MHD Falkner-Skan flow by homotopy analysis method, Commun Nonlinear Sci Numer Simulat, 14 (2009) 3591–3598.
6. [6]
S. R. Sayyed, B. B. Singh and N. Bano, Analytical solution of MHD slip flow past a constant wedge within a porous medium using DTM-Padé, Appl. Math. and Comput, 321 (2018) 472–482.
7. [7]
R. B. Kudenatti, S. R. Kirsur, L. N. Achaala and N. M. Bujurke, Exacte solution of two-dimensional MHD boundary layer flow over a semi infinite flat plate, Commun Nonlinear Sci. Numer Simulat, 18 (2013) 1151–1161.
8. [8]
A. Ishak, R. Nazar and I. Pop, MHD boundary-layer flow past a moving wedge, Magnetohydrodynamics, 45 (1) (2009) 103–110.
9. [9]
N. A. Yacob, A. Ishak and I. Pop, Falkner-Skan problem for a static and moving wedge in a nanofluids, Int. J. Thermal Sci., 50 (2011) 133–139.
10. [10]
V. Marinca and N. Herişanu, Application of optimal homo-topy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35 (6) (2008) 710–715.
11. [11]
A. Bejan, Second-law analysis in heat transfer and thermal design, Adv. Heat Transf., 15 (1982) 1–58.
12. [12]
O. D. Makinde, Entropy analysis for MHD boundary layer flow and heat transfer over a flat plate with a convective surface boundary condition, Int. J. Exergy, 10 (2) (2012) 142–154.
13. [13]
A. S. Butt and A. Ali, Entropy generation in MHD flow over a permeable stretching sheet embedded in a porous medium in the presence of viscous dissipation, Int. J. Exergy, 13 (1) (2013) 85–101.
14. [14]
M. Dehsara, N. Dalir and M. R. H. Nobari, Numerical analysis of entropy generation in nanofluid flow over a transparent plate in porous medium in presence of solar radiation, viscous dissipation and variable magnetic field, J. Mech. Sci. Tech., 28 (5) (2014) 1819–1831.
15. [15]
M. H. Yazdi, S. Abdullah, I. Hashim and K. Sopian, Entropy generation analysis of open parallel microchannels embedded within a permeable continuous moving surface: Application to magnetohydrodynamics (MHD), Entropy, 14 (1) (2011) 1–23.