Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1947–1958 | Cite as

Effect of swirl and number of swirler vanes on combustion characteristics of methane inverse diffusion flame

  • Vipul Patel
  • Rupesh ShahEmail author
Article

Abstract

An experimental study is performed to explore the effect of swirl and number of swirler vanes on combustion characteristics of methane inverse diffusion flame (IDF) using 300 swirler. Influence of varying the number of vanes (4, 6 and 8) on structure and appearance of IDFs is studied. Swirling IDFs are observed with dual flame structure. Length of both IDFs depends on Reynolds number (Reair) and equivalence ratio (Φ). Temperature measured along the centerline in swirling IDF is greater than non-swirling IDF. Radial temperature distribution shows that the swirling effect intensify combustion process. Effect of Φ on CO emission revels that non-swirling IDFs emit more CO compared to swirling IDFs. The lowest NOx emission is observed in swirling IDFs with 6 vanes. Study indicates that the IDFs with swirl results in low emission of CO and NOx.

Keywords

Flame structure Flame temperature Pollutant emission Swirling inverse diffusion flame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. T. Wu and R. H. Essenhigh, Mapping and structure of inverse diffusion flame of methane, Twentieth Symposium (International) on Combustion, The Combustion Institute (1984) 1925–1932.Google Scholar
  2. [2]
    M. A. Mikofski, T. C. Williams, C. R. Shaddix and L. G. Blevins, Flame height measurement of laminar inverse diffusion flames, Combustion and Flame, 146 (2006) 63–72.CrossRefGoogle Scholar
  3. [3]
    S. Mahesh and D. P. Mishra, Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner, Fuel, 87 (2008) 2614–2619.CrossRefGoogle Scholar
  4. [4]
    A. Sobiesiak and J. C. Wenzell, Characteristics and structure of inverse diffusion flames on natural gas, Proceedings of the Combustion Institute, 30 (2005) 743–749.CrossRefGoogle Scholar
  5. [5]
    S. Mahesh and D. P. Mishra, Flame structure of LPG-air inverse diffusion flame in a backstep burner, Fuel, 89 (2010) 2145–2148.CrossRefGoogle Scholar
  6. [6]
    M. A. Mikofski, T. C. Williams, C. R. Shaddix and L. G. Blevins, Effect of varied air flow on flame structure of laminar inverse diffusion flame, Paper Number: 04S-7, Combustion Institute (2004).Google Scholar
  7. [7]
    H. S. Zhen, Y. S. Choy, C. W. Leung and C. S. Cheung, Effects of nozzle length on flame and emission behaviours of multi-fuel-jet inverse diffusion flame burner, Applied Energy, 88 (2011) 2917–2924.CrossRefGoogle Scholar
  8. [8]
    S. Mahesh and D. P. Mishra, Study of the turbulent inverse diffusion flame in recessed backstep and coaxial burners, Combustion, Explosion and Shock Waves, 47(3) (2011) 274–279.CrossRefGoogle Scholar
  9. [9]
    B. Stelzner, F. Hunger, S. Voss, J. Keller, C. Hasse and D. Trimis, Experimental and numerical study of rich inverse diffusion flame structure, Proceedings of the Combustion Institute, 34 (2013) 1045–1055.CrossRefGoogle Scholar
  10. [10]
    J. Miao, C. W. Leung, C. S. Cheung and C. K. Leung, Flame stability and structure of liquefied petroleum gas-fired inverse diffusion flame with hydrogen enrichment, International Scholarly and Scientific Research & Innovation, 7 (2013) 70–75.Google Scholar
  11. [11]
    A. M. Elbaz and W. L. Roberts, Flame structure of methane inverse diffusion flame, Experimental Thermal and Fluid Science, 56 (2014) 23–32.CrossRefGoogle Scholar
  12. [12]
    N. Syred, N. A. Chigier and J. M. Beer, Flame stabilization in recirculation zones of jets with swirl, Thirteenth International Symposium on Combustion, 13(1) (1971) 617–624.CrossRefGoogle Scholar
  13. [13]
    J. M. Beer and N. A. Chigier, Combustion Aerodynamics, Applied Science Publishers Ltd., London (1972).Google Scholar
  14. [14]
    D. G. Lilley, Swirl flow in combustion: A review, AIAA Journal, 15 (1977) 1063–1078.CrossRefGoogle Scholar
  15. [15]
    T. S. Cheng, Y. C. Chao, D. C. Wu, T. Yuan, C. C. Lu, C. K. Cheng and J. M. Chang, Effects of fuel-air mixing on flame structures and NOx emissions in swirling methane jet flames, The Combustion Institute (1998) 1229–1237.Google Scholar
  16. [16]
    P. Schmittel, B. Gunther, B. Lenze, W. Leuckel and H. Bockhorn, Turbulent swirling flames: Experimental investigations of the flow field and formation of nitrogen oxide, Proceedings of the Combustion Institute, 28 (2000) 303–309.CrossRefGoogle Scholar
  17. [17]
    N. Syred and J. M. Beer, Combustion in swirling flows: A review, Combustion Flame, 23 (1974) 143–201.CrossRefGoogle Scholar
  18. [18]
    H. S. Zhen, C. W. Leung and C. S. Cheung, Thermal and emission characteristics of a turbulent swirling inverse diffusion flame, International Journal of Heat and Mass Transfer, 53 (2010) 902–909.CrossRefGoogle Scholar
  19. [19]
    L. L. Dong, C. S. Cheung and C. W. Leung, Heat transfer characteristics of an impinging inverse diffusion flame jet - Part I: Free flame structure, International Journal of Heat and Mass Transfer, 50 (2007) 5108–5123.CrossRefGoogle Scholar
  20. [20]
    V. Patel and R. Shah, Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl, Applied Thermal Engineering, 137 (2018) 377–385.CrossRefGoogle Scholar
  21. [21]
    L. K. Sze, C. S. Cheung and C. W. Leung, Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports, International Journal of Heat and Mass Transfer, 47 (2004) 3119–3129.CrossRefGoogle Scholar
  22. [22]
    H. S. Zhen, C. W. Leung and C. S. Cheung, Heat transfer from a turbulent swirling inverse diffusion flame to a flat surface, International Journal of Heat and Mass Transfer, 52 (2009) 2740–2748.CrossRefGoogle Scholar
  23. [23]
    L. K. Sze, C. S. Cheung and C. W. Leung, Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design, Combustion and Flame, 144 (2006) 237–248.CrossRefGoogle Scholar
  24. [24]
    L. L. Dong, C. S. Cheung and C. W. Leung, Combustion optimization of a port-array inverse diffusion flame jet, Energy, 36 (2011) 2834–2846.CrossRefGoogle Scholar
  25. [25]
    H. S. Zhen, C. W. Leung and C. S. Cheung, A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames, Energy Conversion and Management, 52 (2011) 1263–1271.CrossRefGoogle Scholar
  26. [26]
    A. Kotb and H. Saad, A comparison of the thermal and emission characteristics of CO and counter swirl inverse diffusion flames, International Journal of Thermal Sciences, 109 (2016) 362–373.CrossRefGoogle Scholar
  27. [27]
    S. Brohez, C. Delvosalle and G. Marlair, A two-thermocouple probe for radiation corrections of measured temperatures in compartment fires, Fire Safety Journal, 39 (2004) 399–411.CrossRefGoogle Scholar
  28. [28]
    R. D. Shah and J. Banerjee, Thermal and emission characteristics of a CAN combustor, Heat Mass Transfer, 52 (2016) 499–509.CrossRefGoogle Scholar
  29. [29]
    F. Bazdidi-Tehrani and M. Jahromi, Three-dimensional numerical simulation of the flow inside a model gas turbine combustor, International Journal of Engineering Science, 14 (2003) 161–173.Google Scholar
  30. [30]
    H. S. Zhen, C. S. Cheung, C. W. Leung and H. B. Li, Thermal and heat transfer behaviours of an inverse diffusion flame with induced swirl, Fuel, 103 (2013) 212–219.CrossRefGoogle Scholar
  31. [31]
    T. S. Cheng, Y. C. Chao, D. C. Wu, T. Yuan, C. C. Lu, C. K. Cheng and J. M. Chang, Effects of fuel-air mixing on flame structures and NOx emissions in swirling me-thane jet flames, Twenty-Seventh Symposium (International) on Combustion / The Combustion Institute (1998) 1229–1237.Google Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations