Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1793–1797 | Cite as

Critical AC frequency for stable operation of electrowetting-driven optofluidic devices with polymeric electrolyte solutions

  • Jaebum Park
  • Jonghyun Ha
  • Kyuwhan Choi
  • Jungmok Bae
  • Ho-Young KimEmail author
Article
  • 9 Downloads

Abstract

EWOD (electrowetting on dielectric) is a viable scheme to drive optofluidic devices that utilize the liquid interface as a refractive surface. Although AC (alternating current) voltage is often applied to an electrode in EWOD devices to improve electrical characteristics, it may cause oscillations of liquid interfaces which can be detrimental to the system’s performance as an optical device. Here we experimentally identify the origin of the interfacial oscillations of polymeric electrolyte solutions by observing the dynamic responses of contact lines as a function of the AC frequency. Penetration of small charged matters into the dielectric film of the opposite polarity is shown to induce the voltage relaxation that leads to deterioration of electrowetting performance. Measuring the relaxation time scale which is different for each polarity allows us to find the critical AC frequency that ensures stable interface control.

Keywords

Electrowetting-on-dielectric Frequency Interfacial oscillation Polymeric electrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces, Sixth Ed., Wiley, New York, USA (1997).Google Scholar
  2. [2]
    R. A. Hayes and B. J. Feenstra, Video-speed electronic paper based on electrowetting, Nature, 425 (2003) 383–385.CrossRefGoogle Scholar
  3. [3]
    S. Yang, K. Zhou, E. Kreit and J. Heikenfeld, High reflectivity electrofluidic pixels with zero-power grayscale operation, Appl. Phys Lett, 97 (2010) 143501.Google Scholar
  4. [4]
    S. Kuiper and B. H. W. Hendriks, Variable-focus liquid lens for miniature cameras, Appl. Phys. Lett, 85 (2004) 1128–1130.CrossRefGoogle Scholar
  5. [5]
    N. R. Smith, D. C. Abeysinghe, J. W. Haus and J. Heikenfeld, Agile wide-angle beam steering with electrowetting microprisms, Opt. Exp, 14 (2006) 6557–6563.CrossRefGoogle Scholar
  6. [6]
    B. de Boer, F. Suijver, M. Megens, S. Deladi and S. Kuiper, Control of an electrowetting-based beam deflector, J. Appl. Phys, 107 (2010) 063101.Google Scholar
  7. [7]
    L. Hou, J. Zhang, N. Smith, J. Yang and J. Heikenfeld, A full description of a scalable microfabrication process for arrayed electrowetting microprisms, J. Micromech Microeng., 20 (2009) 015044.Google Scholar
  8. [8]
    D.-G. Lee, J. Park, J. Bae and H.-Y. Kim, Dynamics of a microliquid prism actuated by electrowetting, Lab Chip, 13 (2013) 274–279.CrossRefGoogle Scholar
  9. [9]
    J. Cheng and C.-L. Chen, Adaptive beam tracking and steering via electrowetting-controlled liquid prism, Appl. Phys. Lett., 99 (2011) 191108.Google Scholar
  10. [10]
    M. Dhindsa, S. Kuiper and J. Heikenfeld, Reliable and lowvoltage electrowetting on thin parylene films, Thin Solid Films, 519 (2011) 3346–3351.CrossRefGoogle Scholar
  11. [11]
    S. Berry, J. Kedzierski and B. Abedian, Low voltage electrowetting using thin fluoropolymer films, J. Colloid Interface Sci., 303 (2006) 517–524.CrossRefGoogle Scholar
  12. [12]
    H. Moon, S. K. Cho, R. L. Garrell and C.-J. Kim, Low voltage electrowetting-on-dielectric, J. Appl. Phys., 92 (2002) 4080–4087.CrossRefGoogle Scholar
  13. [13]
    M. K. Kilaru and J. Heikenfeld, Strong charge trapping and bistable electrowetting on nanocomposite fluoropolymer: BaTiO3 dielectrics, Appl. Phys. Lett., 90 (2007) 212906.Google Scholar
  14. [14]
    B. Raj, M. Dhindsa, N. R. Smith, R. Laughlin and J. Heikenfeld, Ion and liquid dependent dielectric failure in electrowetting systems, Langmuir, 25 (2009) 12387–12392.CrossRefGoogle Scholar
  15. [15]
    S. Choi, Y. Kwon, Y.-S. Choi, E. S. Kim, J. Bae and J. Lee, Improvement in the breakdown properties of electrowetting using polyelectrolyte ionic solution, Langmuir, 29 (2012) 501–509.CrossRefGoogle Scholar
  16. [16]
    S. Yang, K. Zhou, E. Kreit and J. Heikenfeld, High reflectivity electrofluidic pixels with zero-power grayscale operation, Appl. Phys. Lett., 97 (2010) 143501.Google Scholar
  17. [17]
    J. Zhang, D. van Meter, L. Hou, N. Smith, J. Yang, A. Stalcup, R. Laughlin and J. Heikenfeld, Preparation and analysis of 1-chloronaphthalene for highly refractive electrowetting optics, Langmuir, 25 (2009) 10413–10416.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  • Jaebum Park
    • 1
  • Jonghyun Ha
    • 1
  • Kyuwhan Choi
    • 2
  • Jungmok Bae
    • 2
  • Ho-Young Kim
    • 1
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Samsung Electronics Co., Ltd.Suwon, Gyeonggi-DoKorea

Personalised recommendations