Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1681–1688 | Cite as

Development of custom-made RF coil for magnetic resonance velocimeter with a high spatial resolution

  • Byungkuen Yang
  • Jee-Hyun Cho
  • Jeesoo LeeEmail author
  • Simon SongEmail author
Article
  • 4 Downloads

Abstract

Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique that is used to measure three-component velocity vectors in a 3D space. However, the spatial resolution of MRV is relatively poor in comparison with optical flow visualization techniques, thereby limiting its applicability to small-scale flows and wall shear stress (WSS) estimation. Thus, we built a solenoid RF coil and evaluated its performance in terms of spatial resolution improvement by measuring the laminar flow in a circular tubing. The coil was developed for a 4.7 Tesla MRI system and for tightly wrapping a flow tubing with an inner diameter of 2 mm. The custom-made RF coil could precisely capture the velocity vectors in a voxel that was 11 times smaller than a commercial coil at the same SNR. Therefore, the WSS errors estimated using the custom-made and commercial coils were 8.5 % and 42.3 %, respectively.

Keywords

Custom-made RF coil High spatial resolution Magnetic resonance velocimetry Wall shear stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. J. Elkins and M. T. Alley, Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion, Experiments in Fluids, 43 (2007) 823–858.CrossRefGoogle Scholar
  2. [2]
    M. Markl, W. Wallis and A. Harloff, Reproducibility of flow and wall shear stress analysis using flow-sensitive four-dimensional MRI, Journal of Magnetic Resonance Imaging, 33 (2011) 988–994.CrossRefGoogle Scholar
  3. [3]
    K. S. Nayak, J.-F. Nielsen, M. A. Bernstein, M. Markl, P. D. Gatehouse, R. M. Botnar, D. Saloner, C. Lorenz, H. Wen, B. S. Hu, F. H. Epstein, J. N. Oshinski and S. V. Raman, Cardiovascular magnetic resonance phase contrast imaging, Journal of Cardiovascular Magnetic Resonance, 17 (2015) 71.CrossRefGoogle Scholar
  4. [4]
    U. Morbiducci, R. Ponzini, G. Rizzo, M. Cadioli, A. Esposito, F. De Cobelli, A. Del Maschio, F. M. Montevec-chi and A. Redaelli, In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging, Annals of Biomedical Engineering, 37 (2009) 516–531.CrossRefGoogle Scholar
  5. [5]
    G. Reiter, U. Reiter, G. Kovacs, B. Kainz, K. Schmidt, R. Maier, H. Olschewski and R. Rienmueller, Magnetic resonance-derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure, Circulation. Cardiovascular Imaging, 1 (2008) 23–30.CrossRefGoogle Scholar
  6. [6]
    M. Markl, F. Wegent, T. Zech, S. Bauer, C. Strecker, M. Schumacher, C. Weiller, J. Hennig and A. Harloff, In vivo wall shear stress distribution in the carotid artery, Circulation: Cardiovascular Imaging, 3 (2010) 647–655.Google Scholar
  7. [7]
    A. J. Barker, C. Lanning and R. Shandas, Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI, Annals of Biomedical Engineering, 38 (2010) 788–800.CrossRefGoogle Scholar
  8. [8]
    H. Ha, G. B. Kim, J. Kweon, S. J. Lee, Y.-H. Kim, N. Kim and D. H. Yang, The influence of the aortic valve angle on the hemodynamic features of the thoracic aorta, Scientific Reports, 6 (2016) 32316.CrossRefGoogle Scholar
  9. [9]
    T. A. Ruesink, M. Smith, K. Ruedinger, C. J. François and A. Roldán-Alzate, The effect of model compliance and pulsatile flow for in-vitro simulation of the aorta, Proc. International Society of Magnetic Resonance in Medicine, 26 (2018).Google Scholar
  10. [10]
    G. B. Kim, H. Ha, J. Kweon, S. J. Lee, Y. H. Kim, D. H. Yang and N. Kim, Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI, Magnetic Resonance Imaging, 34 (2016) 371–375.CrossRefGoogle Scholar
  11. [11]
    B. Casas, J. Lantz, P. Dyverfeldt and T. Ebbers, 4D flow MRI-based pressure loss estimation in stenotic flows: Evaluation using numerical simulations, Magnetic Resonance in Medicine, 75 (2016) 1808–1821.CrossRefGoogle Scholar
  12. [12]
    P. Dyverfeldt, R. Gardhagen, A. Sigfridsson, M. Karlsson and T. Ebbers, On MRI turbulence quantification, Magnetic Resonance Imaging, 27 (2009) 913–922.CrossRefGoogle Scholar
  13. [13]
    C. Tang, D. D. Blatter and D. L. Parker, Accuracy of phase-contrast flow measurements in the presence of partial-volume effects, Journal of Magnetic Resonance Imaging, 3 (1993) 377–385.CrossRefGoogle Scholar
  14. [14]
    W. V. Potters, H. A. Marquering, E. VanBavel and A. J. Nederveen, Measuring wall shear stress using velocityencoded MRI, Current Cardiovascular Imaging Reports, 7 (2014) 9257.CrossRefGoogle Scholar
  15. [15]
    A. T. Lee, G. B. Pike and N. J. Pelc, Three-point phase-contrast velocity measurements with increased velocity-to-noise ratio, Magnetic Resonance in Medicine, 33 (1995) 122–126.CrossRefGoogle Scholar
  16. [16]
    S. L. Peng, F. N. Wang, T. C. Yang, J. C. Hsu, Y. C. Wu, and H. H. Peng, Phase-contrast magnetic resonance imaging for the evaluation of wall shear stress in the common carotid artery of a spontaneously hypertensive rat model at 7T: Location-specific change, regional distribution along the vascular circumference, and reproducibility analysis, Magnetic Resonance Imaging, 34 (2016) 624–631.CrossRefGoogle Scholar
  17. [17]
    D. Edelhoff, L. Walczak, S. Henning, F. Weichert and D. Suter, High-resolution MRI velocimetry compared with numerical simulations, Journal of Magnetic Resonance, 235 (2013) 42–49.CrossRefGoogle Scholar
  18. [18]
    D. I. Hoult and R. E. Richards, The signal-to-noise ratio of the nuclear magnetic resonance experiment, Journal of Magnetic Resonance (1969), 24 (1976) 71–85.CrossRefGoogle Scholar
  19. [19]
    D. L. Olson, T. L. Peck, A. G. Webb, R. L. Magin and J. V. Sweedler, High-resolution microcoil H-NMR for mass-limited, Nanoliter-Volume Samples, 270 (1995) 1967–1970.Google Scholar
  20. [20]
    A. G. Webb, Radiofrequency microcoils for magnetic resonance imaging and spectroscopy, Journal of Magnetic Resonance, 229 (2013) 55–66.CrossRefGoogle Scholar
  21. [21]
    V. Badilita, K. Kratt, N. Baxan, M. Mohmmadzadeh, T. Burger, H. Weber, D. v. Elverfeldt, J. Hennig, J. G. Korvink and U. Wallrabe, On-chip three dimensional mi-crocoils for MRI at the microscale, Lab on a Chip, 10 (2010) 1387–1390.CrossRefGoogle Scholar
  22. [22]
    A. G. Goloshevsky, J. H. Walton, M. V. Shutov, J. S. d. Ropp, S. D. Collins and M. J. McCarthy, Integration of biaxial planar gradient coils and an RF microcoil for NMR flow imaging, Measurement Science and Technology, 16 (2005) 505.CrossRefGoogle Scholar
  23. [23]
    M. J. Mccarthy, Y. J. Choi, A. G. Goloshevsky, J. S. De Ropp, S. D. Collins and J. H. Walton, Measurement of fluid food viscosity using microfabricated radio frequency coils, Journal of Texture Studies, 37 (2006) 607–619.CrossRefGoogle Scholar
  24. [24]
    X. Zhang and A. G. Webb, Magnetic resonance microi-maging and numerical simulations of velocity fields inside enlarged flow cells used for coupled NMR microseparations, Analytical Chemistry, 77 (2005) 1338–1344.CrossRefGoogle Scholar
  25. [25]
    S. Petersson, P. Dyverfeldt and T. Ebbers, Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations, Journal of Magnetic Resonance Imaging, 36 (2012) 128–138.CrossRefGoogle Scholar
  26. [26]
    J. Mispelter and M. Lupu, Homogeneous Resonators, Imperial College Press (2015).Google Scholar
  27. [27]
    J. Lee, S. Ko, J.-H. Cho and S. Song, Validation of magnetic resonance velocimetry for mean velocity measurements of turbulent flows in a circular pipe, Journal of Mechanical Science and Technology, 31 (2017) 1275–1282.CrossRefGoogle Scholar
  28. [28]
    R. Lorenz, J. Bock, J. Snyder, J. G. Korvink, B. A. Jung and M. Markl, Influence of eddy current, Maxwell and gradient field corrections on 3D flow visualization of 3D CINE PC-MRI data, Magnetic Resonance in Medicine, 72 (2014) 33–40.CrossRefGoogle Scholar
  29. [29]
    M. Weiger, D. Schmidig, S. Denoth, C. Massin, F. Vincent, M. Schenkel and M. Fey, NMR microscopy with iso-tropic resolution of 3.0 μm using dedicated hardware and optimized methods, Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, 33B (2008) 84–93.CrossRefGoogle Scholar
  30. [30]
    A. F. Stalder, M. F. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl, Quantitative 2D and 3D phase contrast MRI: Optimized analysis of blood flow and vessel wall parameters, Magnetic Resonance in Medicine, 60 (2008) 1218–1231.CrossRefGoogle Scholar
  31. [31]
    H. Lee, E.-Y. Kim, K.-S. Yang and J. Park, Susceptibility-resistant variable-flip-angle turbo spin echo imaging for reliable estimation of cortical thickness: A feasibility study, NeuroImage, 59 (2012) 377–388.CrossRefGoogle Scholar
  32. [32]
    K. R. O’Brien, S. G. Myerson, B. R. Cowan, A. A. Young and M. D. Robson, Phase contrast ultrashort TE: A more reliable technique for measurement of high-velocity turbulent stenotic jets, Magnetic Resonance in Medicine, 62 (2009) 626–636.CrossRefGoogle Scholar
  33. [33]
    C. J. Elkins, M. T. Alley, L. Saetran and J. K. Eaton, Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow, Experiments in Fluids, 46 (2009) 285–296.CrossRefGoogle Scholar
  34. [34]
    M. J. Benson, C. J. Elkins and J. K. Eaton, Measurements of 3D velocity and scalar field for a film-cooled airfoil trailing edge, Experiments in Fluids, 51 (2011) 443–455.CrossRefGoogle Scholar
  35. [35]
    C. J. Elkins, M. Markl, A. Iyengar, R. Wicker and J. K. Eaton, Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows, International Journal of Heat and Fluid Flow, 25 (2004) 702–710.CrossRefGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Dept. of Mechanical EngineeringHanyang UniversitySeoulKorea
  2. 2.Bioimaging Research TeamKorea Basic Science InstituteCheongjuKorea
  3. 3.Institute of Nano Science and TechnologyHanyang UniversitySeoulKorea

Personalised recommendations