Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 4, pp 1673–1680 | Cite as

Numerical study of droplet vaporization under acoustic pulsing conditions

  • Seongwook Cho
  • Gihun SonEmail author
Article
  • 7 Downloads

Abstract

Bubble growth and collapse in acoustic droplet vaporization (ADV) are numerically studied by employing the level-set interface tracking method, which is extended to examine bubble compressibility, phase change, and multiple interfaces between bubble–droplet and droplet–ambient liquid phases. Numerical results on the vaporization of dodecafluoropentane droplets show that the acoustic pressure amplitude and frequency considerably affect bubble survival and collapse in the ADV process, whereas the number of acoustic cycles exerts minimal influence on it. The effects of acoustic pulsing conditions on the vaporization of droplets with high surface tension are also quantified.

Keywords

Acoustic pulsing conditions Bubble compressibility Bubble growth and collapse Droplet vaporization Level-set method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. L. Bull, The application of microbubbles for targeted drug delivery, Expert Opinion on Drug Delivery, 4 (2007) 475–493.CrossRefGoogle Scholar
  2. [2]
    S. Paul, R. Nahire, S. Mallik and K. Sarkar, Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery, Comput. Mech., 53 (2014) 413435.MathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Shapak, T. Kokhuis, Y. Luan, D. Lohse, N. de Jong, J. B. Fowlkes, M. L. Fabiilli and M. Versluis, Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets, Acoust. Soc. Am., 134 (2013) 1610–1621.CrossRefGoogle Scholar
  4. [4]
    P. S. Sheeran, T. O. Matsunaga and P. A. Dayton, Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures, Phys. Med. Biol., 59 (2014) 379–402.CrossRefGoogle Scholar
  5. [5]
    A. Qamar, Z. Z. Wong, J. B. Fowlkes and J. L. Bull, Dynamics of acoustic droplet vaporization in gas embolotherapy, Appl. Phys. Lett., 96 (2010) 143702.CrossRefGoogle Scholar
  6. [6]
    O. Shpak, T. Kokhuis, Y. Luan, D. Lohse, N. de Jong, J. B. Fowlkes, M. L. Fabiilli and M. Versluis, Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets, Acoust. Soc. Am., 134 (2013) 1610–1621.CrossRefGoogle Scholar
  7. [7]
    W. G. Pitt, R. N. Singh, K. X. Perez, G. A. Husseini and D. R. Jack, Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: A mathematical model, Ultrason. Sonochem, 21 (2014) 879–891.CrossRefGoogle Scholar
  8. [8]
    A. A. Doinikov, P. S. Sheeran, A. Bouakaz and P. A. Dayton, Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation, Medical Physics, 41 (2014) 102901.CrossRefGoogle Scholar
  9. [9]
    S. W. J Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 60 (2000) 662–682.CrossRefzbMATHGoogle Scholar
  10. [10]
    S. Shin, S. I. Abdel-Khalik and D. Juric, Direct threedimensional numerical simulation of nucleate boiling using the level contour reconstruction method, Int. J. Multiphase Flow, 31 (2005) 1231–1242.CrossRefzbMATHGoogle Scholar
  11. [11]
    G. Son and V. K. Dhir, Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes, Int. J. Heat Mass Transfer, 51 (2008) 2566–2582.CrossRefzbMATHGoogle Scholar
  12. [12]
    S. Majidi and A. Afshari, A ghost fluid method for sharp interface simulations of compressible multiphase, Journal of Mechanical Science and Technology, 30 (2016) 1581–1593.CrossRefGoogle Scholar
  13. [13]
    T. Ye and J. L. Bull, Direct numerical simulations of micro-bubble expansion in gas embolotherapy, J. Biomech. Eng., 126 (2004) 745–759.CrossRefGoogle Scholar
  14. [14]
    S. Cho and G. Son, A level-set method for bubble growth in acoustic droplet vaporization, Int. Commun. Heat Mass Transf., 93 (2018) 83–92.CrossRefGoogle Scholar
  15. [15]
    S. Cho and G. Son, Numerical simulation of acoustic droplet vaporization near a wall, Int. Commun. Heat Mass Transf., 99 (2018) 7–17.CrossRefGoogle Scholar
  16. [16]
    S. Cho, G. Son and S. Kim, Numerical analysis of bubble motion under a pressure pulsing condition, Journal of Mechanical Science and Technology, 31 (2017) 5897–5904.CrossRefGoogle Scholar
  17. [17]
    J. Lee and G. Son, Numerical simulation of bubble resonance in an acoustic field, Journal of Mechanical Science and Technology, 32 (2018) 1625–1632.CrossRefGoogle Scholar
  18. [18]
    Y. Hao and A. Prosperetti, The dynamics of vapor bubbles in acoustic pressure fields, Phys. Fluids, 11 (1999) 2008–2019.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© KSME & Springer 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea

Personalised recommendations