Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 1, pp 465–473 | Cite as

Nucleate pool boiling heat transfer characteristics of R600a with CuO nanoparticles

  • N. Gobinath
  • T. VenugopalEmail author
Article
  • 8 Downloads

Abstract

The present research work investigates the effect of CuO nanoparticles on the nucleate boiling heat transfer characteristics of Isobutane (R600a) refrigerant. All the pool boiling experiments are carried with both pure and nano-refrigerants of 0.01, 0.025, 0.05 and 0.1 percentage by volume. The heat flux is varied from 2 kW.m-2 to 20 kW.m-2 at a regular interval of 2 kW.m-2. The heat transfer coefficient values for the pool boiling condition of R600a refrigerant are calculated experimentally, which are less deviating from the established theoretical correlations. The added CuO nanoparticles significantly influenced the nucleate boiling heat transfer coefficient of R600a refrigerant at higher heat flux values. The experiment results reveal that the thermophoretic mobility of nanoparticles play a major role in nanofluids heat transport. In the present work, CuO nanoparticles addition in R600a is optimized and is justified based on gravity and agglomeration effect.

Keywords

Nanoparticles R600a Heat transfer Pool boiling Thermophoresis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. C. Felgueiras, R. Santos, L. M. Fonseca and N. S. Caetano, Buildings Sustainability: The HVAC Contribution, J. Clean Energy Technol., 4 (5) (2016).Google Scholar
  2. [2]
    Energy Information Administration, Commercial Buildings Energy Consumption survey, https://doi.org/www.eia.gov, HomeEnergy ExplainedUse of EnergyIn Commercial Buildings (accessed 12.05.16).
  3. [3]
    N. Gobinath and C. P. Karthikeyan, Numerical modeling of Thermophoresis and Diffusiophoresis in water-alumina nanofluids, Nano Hybrids and Composites, 17 (2017) 24–30.CrossRefGoogle Scholar
  4. [4]
    S. S. Bi, L. Shi and L. L. Zhang, Application of nanoparticles in domestic refrigerators, Appl. Therm. Eng., 28 (2008) 1834–1843.CrossRefGoogle Scholar
  5. [5]
    X. Tang, Y. H. Zhao and Y. H. Diao, Experimental investigation of the nucleate boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate, Exp. Therm. Fluid Sci., 52 (2014) 88–96.CrossRefGoogle Scholar
  6. [6]
    I. M. Mahbubul, A. Saadah, R. Saidur, M. A. Khairul and A. Kamyar, Thermal performance analysis of Al2O3/ R134a nanorefrigerant, Int. J. Heat Mass Trans., 85 (2015) 1034–1040.CrossRefGoogle Scholar
  7. [7]
    M. A. Kedzierski and M. Gong, Effect of CuO nanolubricant on R134a pool boiling heat transfer, Int. J. Refrigeration, 32 (2009) 791–799.CrossRefGoogle Scholar
  8. [8]
    H. Hu, H. Peng and G. Ding, Nucleate pool boiling heat transfer characteristics of refrigerant/nanolubricant mixture with surfactant, Int. J. Refrigeration, 36 (2013) 1045–1055.CrossRefGoogle Scholar
  9. [9]
    S. S. Sanukrishna, A. S. Vishnu and M. J. Prakash, Nanorefrigerants for energy efficient refrigeration systems, J. Mech. Sci. Tech., 31 (8) (2017) 3993–4001.CrossRefGoogle Scholar
  10. [10]
    G. Ding, H. Peng, W. Jiang and Y. Gao, The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture, Int. J. Refrigeration, 32 (2009) 114–123.CrossRefGoogle Scholar
  11. [11]
    H. Peng, G. Ding and H. Hu, Influences of refrigerant-based nanofluid composition and heating condition on the migration of nanoparticles during pool boiling. Part I: Experimental measurement, Int. J. Refrigeration, 34 (2011) 1823–1832.CrossRefGoogle Scholar
  12. [12]
    H. Peng, G. Ding, H. Hu and W. Jiang, Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant-oil mixture, Int. J. Therm. Sci., 49 (2010) 2428–2438.CrossRefGoogle Scholar
  13. [13]
    H. Peng, G. Ding, H. Hu and W. Jiang, Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles, Int. J. Heat Mass Trans., 54 (2011) 1839–1850.CrossRefGoogle Scholar
  14. [14]
    I. M. Mahbubul, S. A. Fadhilah, R. Saidur, K. Y. Leong and M. A. Amalina, Thermophysical properties and heat transfer performance of Al2O3/R-134a nanorefrigerants, Int. J. Heat and Mass Trans., 57 (2013) 100–108.CrossRefGoogle Scholar
  15. [15]
    P. Naphon and C. Thongjing, Pool boiling heat transfer characteristics of refrigerant-nanoparticle mixtures, Int. Commun. Heat and Mass Trans., 52 (2014) 84–89.CrossRefGoogle Scholar
  16. [16]
    Y. H. Diao, C. Z. Li, Y. H. Zhao, Y. Liu and S. Wang, Experimental investigation on the pool boiling characteristics and critical heat flux of Cu-R141b nanorefrigerant under atmospheric pressure, Int. J. Heat and Mass Trans., 89 (2015) 110–115.CrossRefGoogle Scholar
  17. [17]
    M. Mohanraj, S. Jayaraj, C. Muraleedharan and P. Chandrasekar, Experimental investigation of R290/R600a mixture as an alternative to R134a in a domestic refrigerator, Int. J. Therm. Sci., 48 (2009) 1036–1042.CrossRefGoogle Scholar
  18. [18]
    K. Bartelt, Y. Park, L. Liu and A. Jacobi, Flow-boiling of R-134a/ POE/CuO nanofluids in a horizontal tube, International Refrigeration and Air Conditioning Conference, Purdue (2008) 928.Google Scholar
  19. [19]
    N. R. Karthikeyan, J. Philip and B. Raj, Effect of clustering on the thermal conductivity of nanofluids, Mater. Chem. Phys., 109 (2008) 50–55.CrossRefGoogle Scholar
  20. [20]
    V. Trisaksri and S. Wongwises, Nucleate pool boiling heat transfer of TiO2-R141b nanofluids, Int. J. Heat Mass Trans., 52 (2009) 1582–1588.CrossRefGoogle Scholar
  21. [21]
    J. P. Holman, Experimental methods for engineers, 7th edition, Mc-Graw Hill (2011).Google Scholar
  22. [22]
    S. Mukherjee, Preparation and stability of nanofluids-A review, IOSR J. Mech. Civil Eng., 9 (2) (2013) 63–69.CrossRefGoogle Scholar
  23. [23]
    M. G. Cooper, Heat flow rates in saturated nucleate pool boiling-A wide ranging examination using reduced properties, Advances in Heat Transfer, Academic Press, 16 (1984) 157–239.Google Scholar
  24. [24]
    K. Stephan and M. Abdelsalam, Heat transfer correlations for natural convection boiling, Int. J. Heat Mass Trans., 23 (1980) 73–87.CrossRefGoogle Scholar
  25. [25]
    D. Jung, H. Lee, D. Bae and S. Oho, Nucleate boiling heat transfer coefficients of flammable refrigerants, Int. J. Refrigeration, 27 (2004) 409–414.CrossRefGoogle Scholar
  26. [26]
    R. Azizian, H. S. Aybar and T. Okutucu, Effect of nanoconvection due to Brownian motion on thermal conductivity of nanofluids, Proceedings of 7th IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment (2009).Google Scholar
  27. [27]
    I. I. Ryzhkov and A. Y. Minakov, The effect of nanoparticle diffusion and thermophoresis on convective heat transfer of nanofluid in a circular tube, Int. J. Heat Mass Trans., 77 (2014) 956–969.CrossRefGoogle Scholar
  28. [28]
    E. E. Michaelides, Browninan movement and thermophoresis of nanoparticles in liquids, Int. J. Heat Mass Trans., 81 (2015) 179–187.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical and Building SciencesVIT UniversityChennaiIndia

Personalised recommendations