Advertisement

Journal of Mechanical Science and Technology

, Volume 33, Issue 1, pp 423–431 | Cite as

Large-eddy simulation of low-swirl multi-nozzle combustion with co- and counter-swirling arrays

  • Weijie LiuEmail author
  • Bing Ge
  • Shusheng Zang
  • Huiru Wang
Article
  • 9 Downloads

Abstract

Large-eddy simulation (LES) of CH4-air low-swirl flame was carried out in a multi-nozzle combustor with two burner configurations by using a premixed flamelet model. The multi-nozzle burner includes a co-swirling array where all five nozzles act in the same direction and a counter-swirling array where the center nozzle is in the opposite swirling direction to the outer nozzles. LES results are in good agreement with OH-planar laser-induced florescence data in terms of OH concentrations and combustion progress variables. Numerical results show that the flow of each nozzle is constant before merging. The neighboring flows interact with each other and generate a highvelocity zone with intensive turbulence. The kinetic energy in the interacting region for the co-swirling array is larger than that for the counter-swirling array. After neighboring flow combining, the flow develops into a unified swirling motion similar to a single swirling flow for the co-swirling array, whereas the flow maintains the individual swirling structures for the counter-swirling arrangement. However, the swirling array exerts minimal effect on multi-nozzle combustion in terms of the temperature distributions and combustion progress of premixed low-swirl multi-nozzle flames.

Keywords

Flow interaction Large-eddy simulation Low-swirl flame Multi-nozzle burner Premixed flamelet model Reaction progress variable 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. K. Chan, K. S. Lau, W. K. Chin and R. K. Cheng, Freely propagating open premixed turbulent flames stabilized by swirl, P. Combust. Inst., 24 (1) (1992) 511–518.CrossRefGoogle Scholar
  2. [2]
    M. R. Johnson, D. Littlejohn, W. A. Nazeer, K. O. Smith and R. K. Cheng, A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines, P. Combust. Inst., 30 (2) (2005) 2867–2874.CrossRefGoogle Scholar
  3. [3]
    M. Day, S. Tachibana, J. Bell, M. Lijewski, V. Beckner and R. K. Cheng, A combined computational and experimental characterization of lean premixed turbulent low swirl laboratory flames I. methane flames, Combust. Flame, 159 (1) (2012) 275–290.CrossRefGoogle Scholar
  4. [4]
    K.-J. Nogenmyr, C. Fureby, X. S. Bai, P. Petersson, R. Collin and M. Linne, Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame, Combust. Flame, 156 (1) (2009) 25–36.CrossRefGoogle Scholar
  5. [5]
    K.-J. Nogenmyr, P. Petersson, X. S. Bai, C. Fureby, R. Collin, A. Lantz, M. Linne and M. Aldénc, Structure and stabilization mechanism of a stratified premixed low swirl flame, P. Combust. Inst., 33 (1) (2011) 1567–1574.CrossRefGoogle Scholar
  6. [6]
    D. M. Kang, F. E. C. Culick and A. Ratner, Combustion dynamics of a low-swirl combustor, Combust. Flame., 151 (3) (2007) 412–425.CrossRefGoogle Scholar
  7. [7]
    M. Koyama and S. Tachibana, Technical applicability of low-swirl fuel nozzle for liquid-fueled industrial gas turbine combustor, Fuel, 107 (2013) 766–776.CrossRefGoogle Scholar
  8. [8]
    D. E. Brandt and R. R. Wesoriek, GE gas turbine design philosophy, GE Power Systems, GER-3434d.Google Scholar
  9. [9]
    D. Fanaca, P. R. Alemela, C. Hirsch and T. Sattelmayer, Comparison of the flow field of a swirl stabilized premixed burner in an annular and a single burner combustion chamber, J. Eng. Gas Turb. Power, 132 (7) (2010) 071502-1-071502-7.CrossRefGoogle Scholar
  10. [10]
    B. Boehm, A. Dreizler, M. Gnirss, C. Tropea, J. Findeisen and H. Schiffer, Experimental investigation of turbulence structure in a three-nozzle combustor, ASME Turbo Expo 2007, Montreal, Canada, May 14–17 (2007) GT2007-27111.CrossRefGoogle Scholar
  11. [11]
    M. Aguilar, M. Malanoski, G. Adhitya, B. Emerson, V. Acharya, D. Noble and T. Lieuwen, Helical flow disturbances in a multi-nozzle combustor, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-26272.Google Scholar
  12. [12]
    M. T. Szedlmayer, B. D. Quay, J. Samarasinghe, A. D. Rosa, J. G. Lee and D. A. Santavicca, Forced flame response of a lean premixed multi-nozzle can combustor, ASME Turbo Expo 2011, British Columbia, Canada, June 6–10 (2011) GT2011-46080.Google Scholar
  13. [13]
    D. Durox, K. Prieur, T. Schuller and S. Candel, Different flame patterns linked with swirling injector interactions in an annular combustor, ASME Turbo Expo 2015, Montréal, Canada, June 15–19 (2015) GT2015-42034.Google Scholar
  14. [14]
    Y. H. Kao, S. B. Tambe and S. M. Jeng, Aerodynamics of linearly arranged rad-rad swirlers, effect of number of swirlers and alignment, ASME Turbo Expo 2013, San Antonio, Texas, USA, June 3–7 (2013) GT2013-94280.Google Scholar
  15. [15]
    Y. H. Kao, S. B. Tambe and S. M. Jeng, Aerodynamics study of a linearly-arranged 5-swirler array, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-25094.Google Scholar
  16. [16]
    O. Bibik, E. Lubarsky, D. Shcherbik and M. Hadjipanayis, Rotational traveling of tangential wave in multi-injectors LRE combustor simulator, 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 7–10 (2008) AIAA 2008-1001.Google Scholar
  17. [17]
    P. Rojatkar, Y. H. Kao, M. A. Jog and S. M. Jeng, Effect of swirler offset on aerodynamics of multiswirler arrays, ASME Turbo Expo 2014, Düsseldorf, Germany, June 16–20 (2014) GT2014-26236.Google Scholar
  18. [18]
    J. Cai, S. M. Jeng and R. Tacina, Multi-swirler aerodynamics: comparison of different configurations, ASME Turbo Expo 2002, Amsterdam, The Netherlands, June 3–6 (2002) GT2002-30464.Google Scholar
  19. [19]
    J. Kim, K. Yoo, H. Sung, L. Zhang and V. Yang, A numerical study of flow dynamics in an annular combustor with multiple swirl injectors, 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, January 4–7 (2010) AIAA 2010-583.Google Scholar
  20. [20]
    G. Erlebacher, M. Y. Hussani, C. G. Speziale and T. A. Zang, Toward the large eddy simulation of compressible turbulent flows, J. Fluid Mech., 238 (1992) 155–158.CrossRefzbMATHGoogle Scholar
  21. [21]
    I. C. Casci and C. Bruno, Recent advances in the aerospace sciences, Plenum Press, New York, USA (1985).CrossRefGoogle Scholar
  22. [22]
    N. Swaminathan and K. N. C. Bray, Turbulent premixed flames, Cambridge University Press, UK (2011).CrossRefzbMATHGoogle Scholar
  23. [23]
    A. Oijen and L. P. H. Goey, Modelling of premixed laminar flames using flamelet-generated manifolds, Combust. Sci. Tech., 161 (1) (2000) 113–137.CrossRefGoogle Scholar
  24. [24]
    R. K. Cheng, D. Littlejohn, P. A. Strakey and T. Sidwell, Laboratory investigations of a low-swirl injector with H2 and CH4 at gas turbine conditions, P. Combust. Inst., 32 (2) (2009) 3001–3009.CrossRefGoogle Scholar
  25. [25]
    J. Jeong and F. Hussain, On the identification of a vortex, J. Fluid Mech., 285 (1995) 69–94.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    W. J. Liu, B. Ge, Y. S. Tian, Y. W. Yuan, ·S. S. Zang and S. L. Weng, Experimental investigations and large eddy simulation of low-swirl combustion in a lean premixed multinozzle combustor, Exp. Fluids, 56 (34) (2015) Doi: 10.1007/s00348-015-1899-5.Google Scholar
  27. [27]
    A. Nasr and J. C. S. Lai, Comparison of flow characteristics in the near field of two parallel plane jets and an offset plane jet, Phys. Fluids, 9 (10) (1997) 2919–2931.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weijie Liu
    • 1
    Email author
  • Bing Ge
    • 2
  • Shusheng Zang
    • 2
  • Huiru Wang
    • 1
  1. 1.Basic & Applied Research CenterAero Engine Academy of ChinaBeijingChina
  2. 2.Institute of Turbomachinery, School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations