Journal of Mechanical Science and Technology

, Volume 33, Issue 1, pp 307–314 | Cite as

Molecular dynamics simulation and finite element analysis on mechanical behavior of oxygen functionalized graphene/polymer nanocomposites

  • Seunghwa YangEmail author
  • Hyunseong Shin
  • Maenghyo Cho


The mechanical behavior of oxygen functionalized single layer graphene (graphene oxide, GO)/polyethylene (PE) nanocomposites is studied by all atom-based molecular dynamics (MD) simulation and finite element analysis (FEA). To account for the effect of the oxygen functional group, both pristine and 15 hydroxyl functionalized graphene embedded into the transversely isotropic nanocomposites unit cell models are considered. Using the classical ensemble simulations at 200K and at atmospheric pressure, the transversely isotropic elastic constants of the nanocomposites molecular unit cell structures are determined from uniaxial tension and shear tests. To evaluate the effect of the addressed oxygen functional groups on elastic constants of the nanocomposites, periodic FEA models with the perfect interface condition between the graphene and PP matrix are constructed. Due to the degradation of the graphene by the oxidation, the longitudinal Young’s modulus and the in-plane shear modulus of the nanocomposites determined from the MD simulation and FEA are found to be degraded by the oxygen functional groups. According to the MD simulation results, however, the longitudinal shear modulus of the nanocomposites is improved by the oxygen functional groups compared with the pristine graphene. On the other hand, FEA analysis of the longitudinal shear modulus is overestimated unless the oxygen functional group-dependent cohesive interface law between the graphene and PP matrix is addressed.


Molecular dynamics simulation Nanocomposites Graphene oxide Finite element analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. K. Geim, Graphene: Status and prospects, Science, 324 (5934) (2009) 1530–1534.CrossRefGoogle Scholar
  2. [2]
    C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321 (5887) (2008) 385–388.CrossRefGoogle Scholar
  3. [3]
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters, 8 (3) (2008) 902–907.CrossRefGoogle Scholar
  4. [4]
    S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, H. H. Ahn, B. H. Hong and S. Ijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, 5 (2010) 574–578.CrossRefGoogle Scholar
  5. [5]
    A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey and P. M. Ajayan, Synthesis of nitrogen-doped graphene films for lithium battery application, ACS Nano, 4 (11) (2010) 6337–6343.CrossRefGoogle Scholar
  6. [6]
    R. J. Young, I. A. Kinloch, L. Gong and K. S. Novoselov, The mechanics of graphene nanocomposites: A review, Composites Science and Technology, 72 (12) (2012) 1459–1476.CrossRefGoogle Scholar
  7. [7]
    W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, Journal of American Chemical Society, 80 (6) (1958) 1339.CrossRefGoogle Scholar
  8. [8]
    Z. S. Wu, W. Ren, L. Gao, B. Liu, C. Jiang and H. M. Cheng, Synthesis of high-quality graphene with a pre-determined number of layers, Carbon, 47 (2) (2009) 493–499.CrossRefGoogle Scholar
  9. [9]
    J. Moon, S. Yang and M. Cho, Interfacial strengthening between graphene and polymer through Stone-Thrower-Wales defects: Ab initio and molecular dynamics simulations, Carbon, 118 (2017) 66–77.CrossRefGoogle Scholar
  10. [10]
    Q. Zheng, Z. Li, Y. Geng, S. Wang and J. Kim, Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets, Journal of Nanoscience and Nanotechnology, 10 (2010) 7070–7074.CrossRefGoogle Scholar
  11. [11]
    S. Yang, S. Yoon and S. Kwon, Atomistic molecular dynamics simulation study on thermomechanical properties of poly(1,3,5-trimethyl-1,2,5-trivinyl cyclotrisiloxane) dielectric insulator for soft electronics, Journal of Mechanical Science and Technology, 32 (5) (2018) 2183–2189.CrossRefGoogle Scholar
  12. [12]
    S. Yang and M. Cho, Scale bridging method to characterize mechanical properties of nanoparticle/polymer nanocomposites, Applied Physics Letters, 93 (4) (2008) 043111.CrossRefGoogle Scholar
  13. [13]
    S. Yang and M. Cho, A scale-bridging method for nanoparticulate polymer nanocomposites and their non-dilute concentration effect, Applied Physics Letters, 94 (2009) 223104.CrossRefGoogle Scholar
  14. [14]
    S. Yang, J. Choi and M. Cho, Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: Molecular dynamics study, ACS Applied Materials & Interfaces, 4 (9) (2012) 4792–4799.CrossRefGoogle Scholar
  15. [15]
    Accelrys Inc., San Francisco,
  16. [16]
    H. Sun, COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds, The Journal of Physical Chemistry B, 102 (38) (1998) 7338–7364.Google Scholar
  17. [17]
    W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Physical Review A, 31 (3) (1985) 1695–1697.CrossRefGoogle Scholar
  18. [18]
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117 (1) (1995) 1–19.CrossRefzbMATHGoogle Scholar
  19. [19]
    T. Ramanathan, A. A. Abdala, S. Stankovich, D. A. Dikin, M. Jerrera-Alonso, R. D. Piner, D. H. Adamson, H. C. Schniepp, X. Chen, R. S. Ruoff, S. T. Nguyen, I. A. Aksay, R. K. Prud’homme and L. C. Brinson, Functionalized graphene sheets for polymer nanocomposites, Nature Nanotechnology, 3 (2008) 327–331.CrossRefGoogle Scholar
  20. [20]
    S. Yang, S. Yu, W. Kyoung, D. S. Han and M. Cho, Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections, Polymer, 24 (2) (2012) 623–633.CrossRefGoogle Scholar
  21. [21]
    S. Yang, S. Yu, J. Ryu, J. Cho, W. Kyoung, D. S. Han and M. Cho, Nonlinear multiscale modeling approach to characterize elastoplastic beahvior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection, International Journal of Plasticity, 41 (2013) 124–146.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy Systems EngineeringChung-Ang UniversitySeoulKorea
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanKorea
  3. 3.School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea

Personalised recommendations