Journal of Mechanical Science and Technology

, Volume 33, Issue 1, pp 233–240 | Cite as

A comparative study of the transient thermomechanical behavior of friction of the ceramic brake discs: Temperature field effect

  • Naamane BenhassineEmail author
  • Ammar Haiahem
  • Benyebka Bou-Said


During braking, a heat flow is generated by friction and heated the brake components, the heating causes thermal expansion in the disc and the pads and these expansions alternate the contact. This paper proposes a transient thermomechanical simulation of friction by the finite element method of disc/pads of a sport cars brake using ABAQUS. In this comparative study, three different ceramic composite materials (A359/SiC p20, Al6061/SiC, C/C-SiC) are used for the disc which is in friction with organic (C/C) lining bonded to steel back plates of the brake pads. This will allow us to emphasize the importance of the distribution and the variation of the temperature on the contact pressure and the stress field and the braking torque.


Braking Ceramic disc Dry friction Finite element method Temperature Composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Jean-Jacques, Théorie du freinage, Technique de l’Ingénieur, 33 (1989) B5570 v1.Google Scholar
  2. [2]
    J.-J. Carré, Technologie du freinage: Organes de friction, Techniques de l’ingénieur (1990).Google Scholar
  3. [3]
    Y. C. Yang and W. L. Chen, A nonlinear inverse problem in estimating the heat flux of the disc in a disc brake system, Applied Thermal Engineering, 31 (2011) 2439–2448.CrossRefGoogle Scholar
  4. [4]
    D. Majcherczak, Etude thermique d’un contact glissant: approche numérique et expérimentale-application au freinage, Université des sciences et techniques de Lille (2003).Google Scholar
  5. [5]
    N. Fillot, I. Iordanoff and Y. Berthier, Modelling third body flows with a discrete element method—a tool for understanding wear with adhesive particles, Tribology International, 40 (2007) 973–981.CrossRefGoogle Scholar
  6. [6]
    M. Renouf, F. Massi, N. Fillot and A. Saulot, Numerical tribology of a dry contact, Tribology International, 44 (2011) 834–844.CrossRefGoogle Scholar
  7. [7]
    D. Majcherczak and P. Dufrénoy, Dynamic analysis of a disc brake under frictional and thermomechanical internal loading, Archive of Applied Mechanics, 75 (2006) 497–512.CrossRefGoogle Scholar
  8. [8]
    P. Grzes, W. Oliferuk, A. Adamowicz, K. Kochanowski, P. Wasilewski and A. A. Yevtushenko, The numerical-experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking, International Communications in Heat and Mass Transfer, 75 (2016) 1–6.CrossRefGoogle Scholar
  9. [9]
    P. Hwang and X. Wu, Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model, Journal of Mechanical Science and Technology, 24 (2010) 81–84.CrossRefGoogle Scholar
  10. [10]
    A.-L. Cristol-Bulthé, Y. Desplanques, G. Degallaix and Y. Berthier, Mechanical and chemical investigation of the temperature influence on the tribological mechanisms occurring in OMC/cast iron friction contact, Wear, 264 (2008) 815–825.CrossRefGoogle Scholar
  11. [11]
    A. J. Day, M. Tirovic and T. P. Newcomb, Thermal effects and pressure distributions in brakes, Proceedings of the Institution of Mechanical Engineers, 205 (1991) 199–205.CrossRefGoogle Scholar
  12. [12]
    G. B. Veeresh Kumar, C. S. P. Rao and N. Selvaraj, Studies on mechanical and dry sliding wear of Al6061-SiC composites, Composites Part B: Engineering, 43 (2012) 1185–1191.CrossRefGoogle Scholar
  13. [13]
    L. Mu, Y. Shi, X. Feng, J. Zhu and X. Lu, The effect of thermal conductivity and friction coefficient on the contact temperature of polyimide composites: Experimental and finite element simulation, Tribology International, 53 (2012) 45–52.CrossRefGoogle Scholar
  14. [14]
    S. P. Gavin, Self-ventilating disc brake rotor, United States Patent, 7,006,306 B2 (2006).Google Scholar
  15. [15]
    A. Belhocine and M. Bouchetara, Thermal behavior of full and ventilated disc brakes of vehicles, Journal of Mechanical Science and Technology, 26 (2013) 3643–3652.CrossRefGoogle Scholar
  16. [16]
    L. Jiang, Y. Jiang, L. Yu, N. Su and Y. Ding, Thermal analysis for brake disks of SiC/6061 Al alloy co-continuous composite for CRH3 during emergency braking considering airflow cooling, Transactions of Nonferrous Metals Society of China, 22 (2012) 2783–2791.CrossRefGoogle Scholar
  17. [17]
    K. Boike and R. L. Colburn, Internally vented brake disk with improved heat dissipation, US Grant US8353392B2 (2013).Google Scholar
  18. [18]
    P. Xiao, Z. Li, Z. Zhu and X. Xiong, Preparation, properties and application of C/C-SiC composites fabricated by warm compacted-in situ reaction, Journal of Materials Science and Technology, 26 (2010) 283–288.CrossRefGoogle Scholar
  19. [19]
    W. Felderfelder and N. Langhof, Ceramic matrix composites for high performance friction applications, Proceedings of the IV Advanced Ceramics and Applications Conference (2017) 13–29.Google Scholar
  20. [20]
    C. Xiong, T. Li, T. Zhao, M. Khan, J. Wang, X. Ji, H. Li, W. Liu and Y. Shang, Preparation of C/C-SiC composite by low temperature compression molding-liquid silicon infiltration and its application in automobile brake, Ceramics International, 42 (2016) 1057–1062.CrossRefGoogle Scholar
  21. [21]
    S. S. Rana and W. S. Rathod, Coupled thermo-mechanical analysis of an automobile disc brake, International Journal of Engineering Science and Computing, 6 (2016) 7073–7077.Google Scholar
  22. [22]
    P. Kumar and V. K. Srivastava, Tribological behaviour of C/C-SiC composites—A review, Journal of Advanced Ceramics, 5 (2016) 1–12.CrossRefGoogle Scholar
  23. [23]
    A. Evans, C. San Marchi and A. Mortensen, Metal matrix composites in industry, Springer US, New York (2003).CrossRefGoogle Scholar
  24. [24]
    X. Xiao, Y. Yin, J. Bao, L. Lu and X. Feng, Review on the friction and wear of brake materials, Advances in Mechanical Engineering, 8 (2016) 1–10.Google Scholar
  25. [25]
    P. C. Verma, R. Ciudin, A. Bonfanti, P. Aswath, G. Straffelini and S. Gialanella, Role of the friction layer in the high-temperature pin-on-disc study of a brake material, Wear, 346–347 (2016) 56–65.CrossRefGoogle Scholar
  26. [26]
    Dassault Systèmes, Abaqus 6.14-Analysis user’s guide, Volume II: Analysis (2014).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Naamane Benhassine
    • 1
    Email author
  • Ammar Haiahem
    • 1
  • Benyebka Bou-Said
    • 2
  1. 1.LMI, Department of Mechanical EngineeringBadji Mokhtar’s University AnnabaSidi AmarAlgeria
  2. 2.LaMCoSINSA de LyonVilleurbanne CEDEXFrance

Personalised recommendations