Journal of Mechanical Science and Technology

, Volume 32, Issue 11, pp 5351–5361 | Cite as

A molecular dynamics study on the biased propagation of intergranular fracture found in copper STGB

  • Hayoung Chung
  • Maenghyo ChoEmail author


Structural failure of the polycrystalline material is influenced by the interaction between the crystal and their boundaries. Specifically, a ductile material such as copper exhibit the different mechanisms of failure depending on the direction of the crack propagation within the grain boundary. Such directional anisotropy is often studied based on Rice’s criteria, which has the analytic solution in the grain boundary with [110] rotation of the axis. In this work, we expand the study of such intergranular directionality to a propagation within [100] grain boundary. This work introduces the inherent bias found in the intergranular fracture of [100] grain boundaries, using molecular dynamics simulations. Later, such observation is shown to agree with the relative crack propagation velocities, and cohesive energies obtained at the crack tip vicinity. These anisotropic trends are lastly correlated with the detailed atomistic movements observed during structural failures. These findings are to be used in improving the simulation capability and predictability of crack propagation.


Inherent directional preference Crack propagation Bicrystal Molecular dynamics Directional anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. E. Spearot, K. I. Jacob and D. L. McDowell, Nucleation of dislocations from [001]_bicrystal interfaces in aluminum, Acta Mater., 53 (2005) 3579–3589.CrossRefGoogle Scholar
  2. [2]
    D. E. Spearot, K. I. Jacob and D. L. McDowell, Dislocation nucleation from bicrystal interfaces with dissociated structure, Int. J. Plast., 23 (2007) 143–160.CrossRefzbMATHGoogle Scholar
  3. [3]
    D. E. Spearot, L. Capolungo, J. Qu and M. Cherkaoui, On the elastic tensile deformation of <100> bicrystal interfaces in copper, Comput. Mater. Sci., 42 (2008) 57–67.CrossRefGoogle Scholar
  4. [4]
    N. A. Fleck, J. W. Hutchinson and S. Zhigang, Crack path selection in a brittle adhesive layer, Int. J. Solids Struct., 27 (1991) 1683–170.CrossRefGoogle Scholar
  5. [5]
    A. Luque, J. Aldazabal, J. M. Martínez–Esnaola and J. Gil Sevillano, Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal, Fatigue Fract. Eng. Mater. Struct., 30 (2007) 1008–1015.CrossRefGoogle Scholar
  6. [6]
    C. E. Carlton and P. J. Ferreira, What is behind the inverse Hall–Petch effect in nanocrystalline materials?, Acta Mater., 55 (2007) 3749–3756.CrossRefGoogle Scholar
  7. [7]
    J.–S. Wang and P. M. Anderson, Fracture behavior of embrittled F.C.C. metal bicrystals, Acta Metall. Mater., 39 (1991) 779–792.CrossRefGoogle Scholar
  8. [8]
    J. D. Rittner and D. N. Seidman, <110> Symmetric tilt grain–boundary structures in Fcc metals with low stackingfault energies, Phys. Rev. B, 54 (1996) 6999–7015.CrossRefGoogle Scholar
  9. [9]
    Y. Cheng, Z. H. Jin, Y. W. Zhang and H. Gao, On intrinsic brittleness and ductility of intergranular fracture along symmetrical tilt grain boundaries in copper, Acta Mater., 58 (2010) 2293–2299.CrossRefGoogle Scholar
  10. [10]
    Y. Cheng, M. X. Shi and Y. W. Zhang, Atomistic simulation study on key factors dominating dislocation nucleation from a crack tip in two FCC materials: Cu and Al, Int. J. Solids Struct., 49 (2012) 3345–3354.CrossRefGoogle Scholar
  11. [11]
    M. A. Tschopp and D. L. Mcdowell, Asymmetric tilt grain boundary structure and energy in copper and aluminium, Philos. Mag., 87 (2007) 3871–3892.CrossRefGoogle Scholar
  12. [12]
    T. Shimada, K. Ouchi, Y. Chihara and T. Kitamura, Breakdown of continuum fracture mechanics at the nanoscale, Sci. Rep., 5 (2015) 8596.CrossRefGoogle Scholar
  13. [13]
    I. Adlakha, M. A. Tschopp and K. N. Solanki, The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum, Mater. Sci. Eng. A, 618 (2014) 345–354.CrossRefGoogle Scholar
  14. [14]
    I. Adlakha, K. N. Solanki and M. A. Tschopp, Influence of grain boundary structure on interfacial fracture under tensile loading: Cohesive zone model informed by atomistic simulations, TMS2013 Supplemental Proceedings (2013) 753–758.Google Scholar
  15. [15]
    R. Abadi, R. Palanivel, M. Izadifar and T. Rabczuk, The effect of temperature and topological defects on fracture strength of grain boundaries in single–layer polycrystalline boron–nitride nanosheet, Comput. Mater. Sci., 123 (2016) 277–286.CrossRefGoogle Scholar
  16. [16]
    P. R. Budarapu, R. Gracie, S. Yang, X. Zhuang and T. Rabczuk, Efficient coarse graining in multiscale modeling of fracture, Theor. Appl. Fract. Mech., 69 (2014) 126–143.CrossRefGoogle Scholar
  17. [17]
    P. R. Budarapu, R. Gracie, S. P. A. Bordas and T. Rabczuk, An adaptive multiscale method for quasi–static crack growth, Compt. Mech., 53 (2014) 1129–1148.CrossRefGoogle Scholar
  18. [18]
    H. Talebi, M. Silani, S. P. A. Bordas, P. Kerfriden and T. Rabczuk, A computational library for multiscale modeling of material failure, Comput. Mech., 53 (2014) 1047–1071.MathSciNetCrossRefGoogle Scholar
  19. [19]
    H. Talebi, M. Silani and T. Rabczuk, Concurrent multiscale modeling of three dimensional crack and dislocation propagation, Adv. Eng. Softw., 80 (2015) 82–92.CrossRefGoogle Scholar
  20. [20]
    Y. Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter and J. D. Kress, Structural stability and lattice defects in copper: Ab initio, tight–binding, and embedded–atom calculations, Phys. Rev. B, 63 (2001) 224106.CrossRefGoogle Scholar
  21. [21]
    D. Brandon, The structure of high–angle grain boundaries, Acta Metall., 14 (1966) 1479–1484.CrossRefGoogle Scholar
  22. [22]
    A. P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 309 (1983) 37–54.CrossRefGoogle Scholar
  23. [23]
    A. P. Sutton and R. W. Balluffi, Interfaces in crystalline materials, Oxford: Oxford Scientific Publications (1995).Google Scholar
  24. [24]
    D. Spearot, K. Jacob and D. McDowell, Molecular dynamics simulations of grain boundary decohesion in FCC copper and aluminum, 45th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. & Mater. Conf. (2004) 1–11.Google Scholar
  25. [25]
    T. Kitamura, K. Yashiro and R. Ohtani, Atomic simulation on deformation and fracture of nano–single crystal of nickel in tension, JSME Int. J. Ser. A, 40 (1997) 430–435.CrossRefGoogle Scholar
  26. [26]
    A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool, Model. Simul. Mater. Sci. Eng., 18 (2010) 15012.CrossRefGoogle Scholar
  27. [27]
    D. Farkas, Fracture mechanisms of symmetrical tilt grain boundaries, Philos. Mag. Lett., 80 (2000) 229–237.CrossRefGoogle Scholar
  28. [28]
    H. Krull and H. Yuan, Suggestions to the cohesive tractionseparation law from atomistic simulations, Eng. Fract. Mech., 78 (2011) 525–533.CrossRefGoogle Scholar
  29. [29]
    K. Y. Volokh, Comparison between cohesive zone models, Commun. Numer. Methods Eng., 20 (2004) 845–856.CrossRefzbMATHGoogle Scholar
  30. [30]
    S. Plimpton, Fast parallel algorithms for short–range molecular dynamics, J. Comput. Phys., 117 (1995) 1–19.CrossRefzbMATHGoogle Scholar
  31. [31]
    K. B. Broberg, How fast can a crack go?, Mater. Sci., 32 (1996) 80–86.CrossRefGoogle Scholar
  32. [32]
    F. F. Abraham, The atomic dynamics of fracture, J. Mech. Phys. Solids., 49 (2001) 2095–2111.CrossRefzbMATHGoogle Scholar
  33. [33]
    Y. Zhou, Z. Yang and Z. Lu, Dynamic crack propagation in copper bicrystals grain boundary by atomistic simulation, Mater. Sci. Eng. A, 599 (2014) 116–124.CrossRefGoogle Scholar
  34. [34]
    K. Park and G. H. Paulino, Computational implementation of the PPR potential–based cohesive model in ABAQUS: Educational perspective, Eng. Fract. Mech., 93 (2012) 239–262.CrossRefGoogle Scholar
  35. [35]
    A. Latapie and D. Farkas, Molecular dynamics investigation of the fracture behavior of nanocrystalline α–Fe, Phys. Rev. B, 69 (2004) 134110.CrossRefGoogle Scholar
  36. [36]
    D. Farkas, B. Hyde, R. Nogueira and M. Ruda, Atomistic simulations of the effects of segregated elements on grainboundary fracture in body–centered–cubic Fe, Metall. Mater. Trans. A, 36 (2005) 2067–2072.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Structural EngineeringUniversity of CaliforniaSan DiegoUSA
  2. 2.Division of Multiscale Mechanical Design, School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  3. 3.Institute of Advanced Machines and DesignSeoul National UniversitySeoulKorea

Personalised recommendations