Journal of Mechanical Science and Technology

, Volume 32, Issue 9, pp 4423–4431 | Cite as

Electromechanical modeling of a novel moving magnet linear oscillating actuator

  • Adnan Hassan
  • Armin Bijanzad
  • Ismail LazogluEmail author


This article presents a design of a novel moving magnet linear actuator (MMLA) for linear refrigerator compressor. A methodology to estimate the magnetic flux density as well as the magnetic force of MMLA is presented. Considering the simulation time of a 3D FEM software, a combination of 2D FEM with the analytical models makes this technique convenient and expeditious. Using the 2D FEM, the magnetic flux path is segregated into several loops which are divided into finite reluctance zones. The reluctance models for each zone incorporates the effect of armature position to predict the magnetic flux density and linear force incorporating the stator saturation. A 3D FEM simulation is executed to compare the presented models as well as computation times. Furthermore, an analytical approach for evaluating the effect of the excitation frequency and motor constant on the dynamic performance of a linear oscillating actuator is presented and validated experimentally.


FEM simulation Linear compressor Moving magnet linear actuator Reluctance method Stator saturation Excitation frequency Frequency response function Motor constant Motor efficiency System dynamics Transfer function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. C. Tsai and C. W. Chiang, Design and analysis of magnetically-drive actuator applied for linear compressor, Mechatronics, 20 (5) (2010) 596–603.CrossRefGoogle Scholar
  2. [2]
    K. Liang, R. Stone, W. Hancock, M. Dadd and P. Bailey, Comparison between a crank-drive reciprocating compressor and a novel oil-free linear compressor, Int. J. Ref., 45 (9) (2014) 25–34.CrossRefGoogle Scholar
  3. [3]
    I. Boldea and S. A. Nasar, Linear electric actuators and generators, Cambridge, Cambridge Univ. Press, U.K. (2005).Google Scholar
  4. [4]
    T. Mizuno, M. Kawai, F. Tsuchiya, M. Kosugi and H. Yamada, An examination for increasing the motor constant of a cylindrical moving magnet type linear actuator, IEEE Trans. Magn., 41 (10) (2005) 3976–3978.CrossRefGoogle Scholar
  5. [5]
    T. Mizuno, M. Kosugi and S. Fukuzawa, Examination of reduction in electrical time constant of a moving magnet linear actuator, J. Magn. Soc. Japan, 31 (6) (2007) 445–450.CrossRefGoogle Scholar
  6. [6]
    E. O. Ranft, G. van Schoor and C. P. du Rand, Frequency dependent impedance model for heteropolar magnetic bearings, App. Mathematical Mod., 39 (2015) 2119–2130.CrossRefGoogle Scholar
  7. [7]
    P. Naseradinmousavi and C. Nataraj, Nonlinear mathematical modeling of butterfly valves driven by solenoid actuators, App. Mathematical Mod., 35 (2011) 2324–2335.CrossRefzbMATHGoogle Scholar
  8. [8]
    Y. C. Wu and B. S. Jian, Magnetic field analysis of a coaxial magnetic gear mechanism by two-dimensional equivalent magnetic circuit network method and finite-element method, App. Mathematical Mod., 39 (2015) 5746–5758.CrossRefGoogle Scholar
  9. [9]
    F. M. Atay, Magnetic saturation and steady-state analysis of electrical motors, App. Mathematical Mod., 24 (2000) 827–842.CrossRefzbMATHGoogle Scholar
  10. [10]
    C. Pompermaier, K. Kalluf, A. Zambonetti, M. V. Ferreira Da Luz and I. Boldea, Small linear PM oscillatory motor: Magnetic circuit modeling corrected by axisymmetric 2-D FEM and experimental characterization, IEEE Trans. Ind. Electron., 59 (3) (2012) 1389–1396.CrossRefGoogle Scholar
  11. [11]
    L. Xu and Y. Geng, Forces of rails for electromagnetic railguns, App. Mathematical Mod., 36 (2012) 1465–1476.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    E. Paese, M. Geier, R. P. Homrich and R. Rossi, A coupled electric-magnetic numerical procedure for determining the electromagnetic force from the interaction of thin metal sheets and spiral coils in the electromagnetic forming process, App. Mathematical Mod., 39 (2015) 309–321.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Z. Lin, J. Wang and D. Howe, A learning feed-forward current controller for linear reciprocating vapor compressors, IEEE Trans. Ind. Electron., 58 (8) (2011) 3383–3390.CrossRefGoogle Scholar
  14. [14]
    A. Hassan, A. Bijanzad and I. Lazoglu, Dynamic analysis of a novel moving magnet linear actuator, IEEE Tran. on Ind. Elect., 64 (5) (2017) 3758–3766.CrossRefGoogle Scholar
  15. [15]
    A. Bijanzad, A. Hassan and I. Lazoglu, Analysis of solenoid based linear compressor for household refrigerator, Int. J. Ref., 74 (2) (2017) 114–126.Google Scholar
  16. [16]
    S. M. Jang, J. Y. Choi, H. W. Cho and S. H. Lee, Dynamic characteristic analysis and experiments of moving-magnet linear actuator with cylindrical Halbach array, IEEE Trans. Magn., 41 (10) (2005) 3814–3816.CrossRefGoogle Scholar
  17. [17]
    A. Yoshitake, K. Harada, T. Todaka, Y. Ishihara and K. Hirata, Dynamic analysis of a linear oscillatory actuator under feedback control, IEEE Trans. on Mag., 33 (2) (1997) 1662–1665.CrossRefGoogle Scholar
  18. [18]
    J. Wang, W. Wang, G. W. Jewell and D. Howe, A lowpower, linear, permanent-magnet generator/energy storage system, IEEE Trans. on Ind. Elect., 49 (3) (2002) 640–648.CrossRefGoogle Scholar
  19. [19]
    L. Tutelea, M. C. Kim, Y. D. Chun, T. H. Kim, S. B. Lim, J. S. Ahn, J. Lee and I. Boldea, A set of experiments to more fully characterize linear PM oscillatory machines, IEEE Trans. on Mag., 41 (10) (2005) 4009–4011.CrossRefGoogle Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Manufacturing and Automation Research Center, Mechanical Engineering DepartmentKoc UniversityIstanbulTurkey

Personalised recommendations