Journal of Mechanical Science and Technology

, Volume 32, Issue 9, pp 4045–4056 | Cite as

Inertial parameter estimation for the dynamic simulation of a hydraulic excavator

  • Seungjin Yoo
  • Cheol-Gyu Park
  • Seung-Han YouEmail author


This paper presents a systematic method for estimating the inertial parameters of an excavator. The method utilizes dynamic excavator models with the pressure and displacement measurements of the hydraulic actuators. Provided that the geometrical parameters of the mechanical linkages are obtained with relatively high accuracy, the dynamic model is factored into the unknown inertial parameter vector and the known kinematic matrix. The contribution of each inertial parameter on the actuator force under the specific motion is explored through a dynamic sensitivity analysis. The results are then used to investigate various properties of the inertial parameters and categorize them into identifiable, unrelated to dynamics, and known parameter groups, according to numerical properties of the kinematic matrix. Then the identifiable inertial parameters are estimated sequentially, and the guideline for the optimal excavator position at each estimation step is suggested in order to minimize estimation error. The practicality of this method is demonstrated via data acquired using an actual hydraulic excavator.


Excavator Inertial parameter estimation Optimization Parameter categorization Sensitivity analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Salinic, G. Boskovic and M. Nikolic, Dynamic modelling of hydraulic excavator motion using Kane's equations, Automation in Construction, 44 (2014) 56–62.CrossRefGoogle Scholar
  2. [2]
    Y. B. Kim, H. Kang, J. H. Ha, M. S. Kim, P. Y. Kim, S. J. Baek and J. Park, Study on the virtual digging simulation of a hydraulic excavator, 28th International Symposium on Automation and Robotics in Construction ISARC (2011) 95–100.Google Scholar
  3. [3]
    A. Stentz, J. Bares, S. Singh and P. Rowe, A robotic excavator for autonomous truck loading, Autonomous Robots, 7 (2) (1999) 175–186.CrossRefGoogle Scholar
  4. [4]
    P. K. Khosla, Categorization of parameters in the dynamic robot model, IEEE Transaction on Robotics and Automation, 5 (3) (1989) 261–268.CrossRefGoogle Scholar
  5. [5]
    P. K. Khosla and T. Kanade, Parameter identification of robot dynamics, 24th IEEE Conference on Decision and Control (1985) 1754–1760.Google Scholar
  6. [6]
    M. Gautier and W. Khalil, Direct calculation of minimum set of inertial parameters of serial robots, IEEE Transaction on Robotics and Automation, 6 (3)(1990) 368–373.CrossRefGoogle Scholar
  7. [7]
    Y. H. Zweiri, Identification schemes for unmanned excavator arm parameters, International Journal of Automation and Computing, 5 (2) (2008) 185–192.CrossRefGoogle Scholar
  8. [8]
    S. Tafazoli, P. D. Lawrence and S. E. Salcudean, Identification of inertial and friction parameters for excavator arms, IEEE Transactions on Robotics and Automation, 15 (5) (1999) 966–971.CrossRefGoogle Scholar
  9. [9]
    G. Calafiore, M. Indri and B. Bona, Robot dynamic calibration: Optimal excitation trajectories and experimental parameter estimation, Journal of Robotic Systems, 18 (2) (2001) 55–68.CrossRefzbMATHGoogle Scholar
  10. [10]
    B. Armstrong, On finding 'exciting' trajectories for identification experiments involving systems with non-linear dynamics, IEEE International Conference on Robotics and Automation (1987) 1131–1139.Google Scholar
  11. [11]
    W. Rackl, R. Lampariello and G. Hirzinger, Robot excitation trajectories for dynamic parameter estimation using optimized B-splines, IEEE International Conference on Robotics and Automation (ICRA) (2012) 2042–2047.Google Scholar
  12. [12]
    J. Swevers, C. Ganseman, D. B. Tukel, J. De Schutter and H. Van Brussel, Optimal robot excitation and identification, IEEE Transactions on Robotics and Automation, 13 (5) (1997) 730–740.CrossRefGoogle Scholar
  13. [13]
    F. C. Park, J. E. Bobrow and S. R. Ploen, A Lie group formulation of robot dynamics, The International Journal of Robotics Research, 14 (6) (1995) 609–618.CrossRefGoogle Scholar
  14. [14]
    S. R. Ploen and F. C. Park, Coordinate-invariant algorithms for robot dynamics, IEEE Transactions on Robotics and Automation, 15 (6) (1999) 1130–1135.CrossRefGoogle Scholar
  15. [15]
    X. Hu, F. Sun and Y. Zou, Online model identification of lithium-ion battery for electric vehicles, Journal of Central South University of Technology, 18 (5) (2011) 1525–1531.CrossRefGoogle Scholar
  16. [16]
    N. Bennet, A. Walawalkar and C. Schindler, Payload estimation in excavators-model based evaluation of current payload estimation systems, Proceedings of the 3rd Commercial Vehicle Technology Symposium (2014) 333–346.Google Scholar
  17. [17]
    F. Ballaire and S. Muller, Dynamic weighing with a front loader, 71st International Agricultural Engineering Conference (2013) 413–418.Google Scholar
  18. [18]
    C. Gaz and A. D. Luca, Payload estimation based on identified coefficients of robot dynamics-with an application to collision detection, IEEE/RSJ International Conference on Intelligent Robots and Systems (2017) 3033–3040.Google Scholar
  19. [19]
    A. Gawlik and P. Kucybala, Dynamic weighing system-used in excavator, Journal of KONES Powertrain and Transport, 24 (4) (2017) 31–38.Google Scholar
  20. [20]
    J. J. Hindman, Dynamic payload estimation in four-wheel drive loaders, Dissertation, University of Saskatchewan, Saskatchewan Canada (2008).Google Scholar

Copyright information

© The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Korea Institute of Machinery and MaterialsDaejeonKorea
  2. 2.Construction Equipment Technology R&BD GroupKorea Institute of Industrial TechnologyDaeguKorea
  3. 3.School of Mechanical EngineeringKorea University of Technology and EducationCheonanKorea

Personalised recommendations