Advertisement

Study on the Fracture Properties of the PMMA Structure for the JUNO Central Detector

  • Zongyi Wang
  • Yuanqing WangEmail author
  • Xinxi Du
  • Tianxiong Zhang
  • Yuekun Heng
Structural Engineering
  • 13 Downloads

Abstract

Polymethyl methacrylate (PMMA) is increasingly used in building structures nowadays. PMMA materials utilized in structures have different fracture property compared with those used in aircrafts or biomedical equipment. Single-edge-notch bending (SENB) tests were firstly carried out at various temperatures (-40°C, -20°C, 0°C, 20°C, and 40°C) to determine the KIC values of base PMMA materials and connected areas. The crack-resisting capacity of PMMA plate is subsequently studied. The fracture property of the PMMA joint for the Jiangmen Underground Neutrino Observatory (JUNO) central detector is investigated. The results show that base PMMA material has higher KIC values than connected area. The KIC of base PMMA material is lowest at 20°C and highest at -20°C, while that of connected area is lowest at 40°C and highest at -40°C. For the PMMA joint of the JUNO detector, the cracks perpendicular to the X axis are more disadvantageous than those perpendicular to the Z axis. The stress intensity factors (SIFs) at the crack front of the embedded crack decrease with the increase of embedded depth. Due to the presence of two parallel surface or embedded cracks, the SIFs at the crack front decrease.

Keywords

PMMA temperature bulk polymerization surface crack embedded crack FEA fracture mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANSYS (2016). Academic Research, Release 17.0. Help System, ANSYS, Inc., Canonsburg, PA, USA.Google Scholar
  2. ASTM D5045 (2014). Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials, D5045, ASTM International, West Conshohocken, PA, USA.Google Scholar
  3. ASTM D6068 (2010). Standard test method for determining j-r curves of plastic materials, D6068, ASTM International, West Conshohocken, PA, USA.Google Scholar
  4. ASTM E1820 (2011). Standard test method for measurement of fracture toughness, E1820, ASTM International, West Conshohocken, PA, USA.Google Scholar
  5. Atkins, A. G., Lee, C. S., and Caddell, R. M. (1975a). “Time-temperature dependent fracture toughness of PMMA.1.” Journal of Materials Science, Vol. 10, No. 8, pp. 1381–1393, DOI:  https://doi.org/10.1007/BF00540829.CrossRefGoogle Scholar
  6. Atkins, A. G., Lee, C. S., and Caddell, R. M. (1975b). “Time-temperature dependent fracture toughness of PMMA.2.” Journal of Materials Science, Vol. 10, No. 8, pp. 1394–1404, DOI:  https://doi.org/10.1007/BF00540830.CrossRefGoogle Scholar
  7. Awang, M. K., Ismail, A. E., Tobi, A. M., and Zainulabidin, M. H. (2017). “Stress intensity factors and interaction of two parallel surface cracks on cylinder under tension.” IOP Conference Series: Materials Science and Engineering, Vol. 165, No. 1, DOI:  https://doi.org/10.1088/1757-899X/165/1/012009.Google Scholar
  8. Balzano, M. and Ravi-Chandar, K. (1991). “Temperature effects on quasi-static fracture of PMMA.” Journal of Materials Science, Vol. 26, No. 5, pp. 1387–1390, DOI:  https://doi.org/10.1007/BF00544482.
  9. Chen, W., Lu, F., and Cheng, M. (2002). “Tension and compression tests of two polymers under quasistatic and dynamic loading.” Polymer Testing, Vol. 21, No. 2, pp. 113–121, DOI:  https://doi.org/10.1016/S0142-9418(01)00055-1.CrossRefGoogle Scholar
  10. Choi, S. R. and Salem, J. A. (1993). “Fracture toughness of PMMA as measured with indentation cracks.” Journal of Materials Research, Vol. 8, No. 12, pp. 3210–3217, DOI:  https://doi.org/10.1557/JMR.1993.3210.CrossRefGoogle Scholar
  11. Cicero, S., Madrazo, V., García, T., Cuervo, J., and Ruiz, E. (2013). “On the notch effect in load bearing capacity, apparent fracture toughness and fracture mechanisms of polymer PMMA, aluminium alloy Al7075-T651 and structural steels S275JR and S355J2.” Engineering Failure Analysis, Vol. 29, pp. 108–121, DOI:  https://doi.org/10.1016/j.engfailanal.2012.11.010.CrossRefGoogle Scholar
  12. de Souza, J. M., Yoshimura, H. N., Peres, F. M., and Schön, C. G. (2012). “Effect of sample pre-cracking method and notch geometry in plane strain fracture toughness tests as applied to a PMMA resin.” Polymer Testing, Vol. 31, No. 6, pp. 834–840, DOI:  https://doi.org/10.1016/j.polymertesting.2012.06.003.CrossRefGoogle Scholar
  13. Gao, Z. Z., Liu, W., Liu, Z. Q., and Yue, Z. F. (2010). “Experiment and simulation study on the creep behavior of PMMA at different temperatures.” Polymer-plastics Technology and Engineering, Vol. 49, No. 14, pp. 1478–1482, DOI:  https://doi.org/10.1080/03602559.2010.496429.CrossRefGoogle Scholar
  14. GB/T 4161-2007 (2007). Metallic materials-determination of plane-strain fracture toughness, China National Standards GB/T 4161-2007, National Standard of the People’s Republic of China, Beijing, China (in Chinese).Google Scholar
  15. Gosz, M. and Moran, B. (2002). “An interaction energy integral method for computation of mixed-mode stress intensity factors along nonplanar crack fronts in three dimensions.” Engineering Fracture Mechanics, Vol. 69, No. 3, pp. 299–319, DOI:  https://doi.org/10.1016/S0013-7944(01)00080-7.CrossRefGoogle Scholar
  16. Hahn, J. (2014). Analysis of the interaction of two parallel surface cracks, PhD Thesis, Purdue University, West Lafayette, IN, USA.Google Scholar
  17. Hao, W., Ma, L., Chen, X., Yuan, Y., and Ma, Y. (2016). “Comparison of the fatigue crack propagation behavior of two different forms of PMMA using two-stage zone model.” Journal of Materials Engineering and Performance, Vol. 25, No. 2, pp. 493–501, DOI:  https://doi.org/10.1007/s11665-015-1852-z.CrossRefGoogle Scholar
  18. Hoey, D. and Taylor, D. (2009). “Comparison of the fatigue behaviour of two different forms of PMMA.” Fatigue & Fracture of Engineering Materials & Structures, Vol. 32, No. 3, pp. 261–269, DOI:  https://doi.org/10.1111/j.1460-2695.2009.01327.x.CrossRefGoogle Scholar
  19. Huang, A., Yao, W., and Chen, F. (2014). “Analysis of fatigue life of PMMA at different frequencies based on a new damage mechanics model.” Mathematical Problems in Engineering, No. 352676, DOI:  https://doi.org/10.1155/2014/352676.Google Scholar
  20. Ismail, A. E. (2013). “Stress intensity factors of three parallel edge cracks under bending moments.” IOP Conference Series: Materials Science and Engineering, Vol. 50, No. 1, DOI:  https://doi.org/10.1088/1757-899X/50/1/012020.
  21. Kim, K. H. (2009). Structural evaluation and life cycle assessment of a transparent composite facade system using biofiber composites and recyclable polymers. PhD Thesis, University of Michigan, Ann Arbor, USA.Google Scholar
  22. Kim, K. H. (2011). “A comparative life cycle assessment of a transparent composite facade system and a glass curtain wall system.” Energy and Building, Vol. 43, No. 12, pp. 3436–3445, DOI:  https://doi.org/10.1016/j.enbuild.2011.09.006.CrossRefGoogle Scholar
  23. Lach, R., Gyurova, L. A., and Grellmann, W. (2007). “Application of indentation fracture mechanics approach for determination of fracture toughness of brittle polymer systems.” Polymer Testing, Vol. 26, No. 1, pp. 51–59, DOI:  https://doi.org/10.1016/j.polymertesting.2006.08.006.CrossRefGoogle Scholar
  24. Li, Z. and Lambros, J. (2001). “Strain rate effects on the thermomechanical behavior of polymers.” International Journal of Solids and Structures, Vol. 38, No. 20, pp. 3549–3562, DOI:  https://doi.org/10.1016/S0020-7683(00)00223-7.CrossRefzbMATHGoogle Scholar
  25. Masayuki, K. (2008). “Growth evaluation of multiple interacting surface cracks. Part II: Growth evaluation of parallel cracks.” Engineering Fracture Mechanics, Vol. 75, No. 6, pp. 1350–1366, DOI:  https://doi.org/10.1016/j.engfracmech.2007.07.014.CrossRefGoogle Scholar
  26. Newman, J. C. and Raju, I. S. (1981). “An empirical stress-intensity factor equation for the surface crack.” Engineering Fracture Mechanics, Vol. 15, Nos. 1–2, pp. 185–192, DOI:  https://doi.org/10.1016/0013-7944(81)90116-8.CrossRefGoogle Scholar
  27. Stachiw, J. D. (2003). Handbook of acrylics for submersibles, hyperbaric chambers, and aquaria, Best Publishing Company, North Palm Beach, FL, USA.Google Scholar
  28. Wang, Z., Wang, Y., Du, X., Zhang, T., and Yuan, H. (2018a). “Quasi-static tensile test of thick acrylic sheets under different temperatures.” Journal of Southeast University (Natural Science Edition), Vol. 48, No. 1, pp. 132–137, DOI:  https://doi.org/10.3969/j.issn.1001-0505.2018.01.02 (in Chinese).Google Scholar
  29. Wang, Z., Wang, Y., Heng, Y., Du, X., and Qin, Z. (2016). “Bearing capacities of the structure and joint of JUNO central detector.” Periodica Polytechnica-Civil Engieering, Vol. 60, No. 4, pp. 561–572, DOI:  https://doi.org/10.3311/PPci.8551.CrossRefGoogle Scholar
  30. Wang, Z., Wang, Y., Wang, Z., Chen, S., Du, X., Zhang, T., Guo, Z., and Yuan, H. (2017). “Design and analysis of a 1-ton prototype of the jinping neutrino experiment.” Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment, Vol. 855, pp. 81–87, DOI:  https://doi.org/10.1016/j.nima.2017.03.007.CrossRefGoogle Scholar
  31. Wang, Z., Zhang, Y., Wang, Y., Du, X., and Yuan, H. (2018b). “Numerical study on fatigue behavior of tubular joints for signal support structures.” Journal of Constructional Steel Research, Vol. 143, pp. 1–10, DOI:  https://doi.org/10.1016/j.jcsr.2017.12.016.CrossRefGoogle Scholar
  32. Wang, Y., Zong, L., Heng, Y., Wang, Z., Zhou, Y., Hou, S., Qin, Z., and Ma, X. (2014). “Application of an acrylic vessel supported by a stainless-steel truss for the JUNO central detector.” Science China-Technological Sciences, Vol. 57, No. 12, pp. 2523–2529, DOI:  https://doi.org/10.1007/s11431-014-5715-x.CrossRefGoogle Scholar
  33. Wu, H., Ma, G., and Xia, Y. (2004). “Experimental study of tensile properties of PMMA at intermediate strain rate.” Materials Letters, Vol. 58, No. 29, pp. 3681–3685, DOI:  https://doi.org/10.1016/j.matlet.2004.07.022.CrossRefGoogle Scholar
  34. Yu, H., Wu, L., Guo, L., Wu, H., and Du, S. (2010). “An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces.” International Journal of Solids and Structures, Vol. 47, No. 16, pp. 2178–2189, DOI:  https://doi.org/10.1016/j.ijsolstr.2010.04.027.CrossRefzbMATHGoogle Scholar
  35. Zhang, X., Sun, Z., and Hu, X. (2014). “Low temperature fracture toughness of PMMA and crack-tip conditions under flat-tipped cylindrical indenter.” Polymer Testing, Vol. 38, pp. 57–63, DOI:  https://doi.org/10.1016/j.polymertesting.2014.06.009.CrossRefGoogle Scholar
  36. Zhou, F., Hou, S., Qian, X., Chen, Z., Zheng, C., and Xu, F. (2016). “Creep behavior and lifetime prediction of PMMA immersed in liquid scintillator.” Polymer Testing, Vol. 53, pp. 323–328, DOI:  https://doi.org/10.1016/j.polymertesting.2016.06.016.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  • Zongyi Wang
    • 1
  • Yuanqing Wang
    • 1
    Email author
  • Xinxi Du
    • 2
  • Tianxiong Zhang
    • 3
  • Yuekun Heng
    • 4
  1. 1.Dept. of Civil EngineeringTsinghua UniversityBeijingChina
  2. 2.School of Civil EngineeringWuhan UniversityWuhanChina
  3. 3.School of Civil EngineeringTianjin UniversityTianjinChina
  4. 4.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations