Advertisement

Development of the FCM-SVR Hybrid Model for Estimating the Suspended Sediment Load

  • Farzad Hassanpour
  • Salman SharifazariEmail author
  • Khaled Ahmadaali
  • Sara Mohammadi
  • Zeinab Sheikhalipour
Hydraulic Engineering
  • 4 Downloads

Abstract

The accurate estimation of suspended sediment load (SSL) carried by a river is one of the primary issues in river engineering, water resources, and environment projects. Boundary condition and simplification of some important parameters lead to some limitation on the empirical sediment equations which are based on flow and sediment properties. In this study, the potential of a developed Fuzzy C-mean clustering-support vector regression model, as a FCM-SVR hybrid model, was investigated in comparison with sediment rating curve (SRC), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and support vector regression (SVR) models for estimating the daily SSL in Sistan River in Iran. Root mean square error (RMSE), mean absolute error (MAE), determination coefficient (R2), and Nash-Sutcliffe efficiency coefficient (NSE) statistics were utilized to evaluate the accuracy of the models. The result showed that FCM-SVR model estimates SSL (with RMSE, MAE, R2, and NSE equal to 34,415.52 ton/day, 12,256.28 ton/day, 0.922, and 0.918 respectively in testing period) more accurate than other models. The RMSE value, which was 50% lower compared to other models, reveals that this model possesses the lowest error than the other models. Also, the obtained results indicated that the estimated SSLs, using the best FCM-SVR, were in good agreement and linear dependence with observed values. Unlike other models, FCM-SVR model appropriately estimates extreme values of SSL.

Keywords

Fuzzy C-mean clustering hybrid model Sistan river suspended sediment load SVR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adib, A. and Mahmoodi, A. (2016). “Prediction of suspended sediment load using ANN GA conjunction model with Markov chain approach at flood conditions.” KSCE Journal of Civil Engineering, Vol. 21, No. 1, pp. 447–457, pp. 1–11, DOI:  https://doi.org/10.1007/s12205-016-0444-2.Google Scholar
  2. Agrawal, A. (2014). “Studying the commons, governing common-pool resource outcomes: Some concluding thoughts.” Environmental Science & Policy, Vol. 36, pp. 86–91, DOI:  https://doi.org/10.1016/j.envsci.2013.08.012.Google Scholar
  3. Akhbari, M. and Grigg, N. S. (2014). “Water management trade-offs between agriculture and the environment: A multiobjective approach and application.” Journal of Irrigation and Drainage Engineering, Vol. 140, No. 8, pp. 05014005, DOI:  https://doi.org/10.1061/(ASCE)IR.1943-4774.0000737.Google Scholar
  4. Altun, H., Bilgil, A., and Fidan, B. (2007). “Treatment of multi-dimensional data to enhance neural network estimators in regression problems.” Expert Systems with Applications, Vol. 32, No. 2, pp. 599–605, DOI:  https://doi.org/10.1016/j.eswa.2006.01.054.Google Scholar
  5. Araghinejad, S. (2013). Data-driven modeling: Using MATLAB® in water resources and environmental engineering, Springer Science & Business Media, Berlin, Heidelberg, Germany.Google Scholar
  6. Asselman, N. (2000). “Fitting and interpretation of sediment rating curves.” Journal of Hydrology, Vol. 234, No. 3, pp. 228–248, DOI:  https://doi.org/10.1016/S0022-1694(00)00253-5.Google Scholar
  7. Bezak, N., Rusjan, S., Kramar Fijavž, M., Mikoš, M., and Šraj, M. (2017). “Estimation of suspended sediment loads using copula functions.” Water, Vol. 9, No. 8, p. 628, DOI:  https://doi.org/10.3390/w9080628.Google Scholar
  8. Bezdek, J. C., Ehrlich, R., and Full, W. (1984). “FCM: The fuzzy c-means clustering algorithm.” Computers & Geosciences, Vol. 10, No. 2, pp. 191–203, DOI:  https://doi.org/10.1016/0098-3004(84)90020-7.Google Scholar
  9. Bhagwat, P. P. and Maity, R. (2013). “Hydroclimatic streamflow prediction using least square-support vector regression.” ISH Journal of Hydraulic Engineering, Vol. 19, No. 3, pp. 320–328, DOI:  https://doi.org/10.1080/09715010.2013.819705.Google Scholar
  10. Buyukyildiz, M. and Kumcu, S. Y. (2017). “An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models.” Water Resources Management, Vol. 31, No. 4, pp. 1343–1359, DOI:  https://doi.org/10.1007/s11269-017-1581-1.Google Scholar
  11. Chang, F. J. and Chang, Y. T. (2006). “Adaptive neuro-fuzzy inference system for prediction of water level in reservoir.” Advances in Water Resources, Vol. 29, No. 1, pp. 1–10, DOI:  https://doi.org/10.1016/j.advwatres.2005.04.015.Google Scholar
  12. Cigizoglu, H. K. and Kisi, Ö. (2006). “Methods to improve the neural network performance in suspended sediment estimation.” Journal of Hydrology, Vol. 317, No. 3, pp. 221–238, DOI:  https://doi.org/10.1016/j.jhydrol.2005.05.019.Google Scholar
  13. Cimen, M. (2008). “Estimation of daily suspended sediments using support vector machines.” Hydrological Sciences Journal, Vol. 53, No. 3, pp. 656–666, DOI:  https://doi.org/10.1623/hysj.53.3.656.Google Scholar
  14. Cobaner, M., Unal, B., and Kisi, O. (2009). “Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data.” Journal of Hydrology, Vol. 367, No. 1, pp. 52–61, DOI:  https://doi.org/10.1016/j.jhydrol.2008.12.024.Google Scholar
  15. Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods, Cambridge University Press, Cambridge, England.zbMATHGoogle Scholar
  16. Drake, J. T. (2000). Communications phase synchronization using the adaptive network fuzzy inference system (anfis), New Mexico State University, Las Cruces, NM, USA.Google Scholar
  17. Dunn, J. C. (1973). “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.” Journal of Cybernetics, Vol. 3, No. 3, pp. 32–57.MathSciNetzbMATHGoogle Scholar
  18. Fausett, L. (1994). Fundamentals of neural networks: Architectures, algorithms, and applications, Prentice Hall, Englewood Cliffs, NJ, USA.zbMATHGoogle Scholar
  19. Ferguson, R. (1987). “Accuracy and precision of methods for estimating river loads.” Earth Surface Processes and Landforms, Vol. 12, No. 1, pp. 95–104, DOI:  https://doi.org/10.1002/esp.3290120111.Google Scholar
  20. Fotovatikhah, F., Herrera, M., Shamshirband, S., Chau, K. W., Faizollahzadeh Ardabili, S., and Piran, M. J. (2018). “Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work.” Engineering Applications of Computational Fluid Mechanics, Vol. 12, No. 1, pp. 411–437, DOI:  https://doi.org/10.1080/19942060.2018.1448896.Google Scholar
  21. Gordon, H. S. (1954). “The economic theory of a common-property resource: The fishery.” Journal of Political Economy, Vol. 62, No. 2, pp. 124–142, DOI:  https://doi.org/10.1057/978023052321010.Google Scholar
  22. Goyal, M. K. (2014). “Modeling of sediment yield prediction using M5 model tree algorithm and wavelet regression.” Water Resources Management, Vol. 28, No. 7, pp. 1991–2003, DOI:  https://doi.org/10.1007/s11269-014-0590-6.Google Scholar
  23. He, Z., Wen, X., Liu, H., and Du, J. (2014). “A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region.” Journal of Hydrology, Vol. 509, pp. 379–386, DOI:  https://doi.org/10.1016/j.jhydrol.2013.11.054.Google Scholar
  24. Jain, S. K. (2001). “Development of integrated sediment rating curves using ANNs.” Journal of Hydraulic Engineering, Vol. 127, No. 1, pp. 30–37, DOI:  https://doi.org/10.1061/(ASCE)0733-9429(2001)127:1(30).Google Scholar
  25. Jang, J. S. R. (1993). “ANFIS: Adaptive-network-based fuzzy inference system.” Systems, Man and Cybernetics, IEEE Transactions on, Vol. 23, No. 3, pp. 665–685, DOI:  https://doi.org/10.1109/21.256541.Google Scholar
  26. Kisi, O. (2005). “Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones.” Hydrological Sciences Journal, Vol. 50, No. 4, pp. 683–696, DOI:  https://doi.org/10.1623/hysj.2005.50.4.683.Google Scholar
  27. Kisi, O. (2012). “Modeling discharge-suspended sediment relationship using least square support vector machine.” Journal of Hydrology, Vol. 456, pp. 110–120, DOI:  https://doi.org/10.1016/j.jhydrol.2012.06.019.Google Scholar
  28. Kisi, O., Nia, A. M., Gosheh, M. G., Tajabadi, M. R. J., and Ahmadi, A. (2012a). “Intermittent streamflow forecasting by using several data driven techniques.” Water Resources Management, Vol. 26, No. 2, pp. 457–474, DOI:  https://doi.org/10.1007/s11269-011-9926-7.Google Scholar
  29. Kisi, O., Ozkan, C., and Akay, B. (2012b). “Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm.” Journal of Hydrology, Vol. 428, pp. 94–103, DOI:  https://doi.org/10.1016/j.jhydrol.2012.01.026.Google Scholar
  30. Kisi, O., Yuksel, I., and Dogan, E. (2008). “Modelling daily suspended sediment of rivers in Turkey using several data-driven techniques/Modélisation de la charge journalière en matières en suspension dans des rivières turques à l’aide de plusieurs techniques empiriques.” Hydrological Sciences Journal, Vol. 53, No. 6, pp. 1270–1285, DOI:  https://doi.org/10.1623/hysj.53.6.1270.Google Scholar
  31. Kumar, D., Pandey, A., Sharma, N., and Flügel, W. A. (2014). “Modeling suspended sediment using artificial neural networks and TRMM-3B42 version 7 rainfall dataset.” Journal of Hydrologic Engineering, Vol. 20, No. 6, pp. C4014007, DOI:  https://doi.org/10.1061/(ASCE)HE.1943-5584.0001082.Google Scholar
  32. Lafdani, E. K., Nia, A. M., and Ahmadi, A. (2013). “Daily suspended sediment load prediction using artificial neural networks and support vector machines.” Journal of Hydrology, Vol. 478, pp. 50–62, DOI:  https://doi.org/10.1016/j.jhydrol.2012.11.048.Google Scholar
  33. Lin, G. F., Chou, Y. C., and Wu, M. C. (2013). “Typhoon flood forecasting using integrated two-stage support vector machine approach.” Journal of Hydrology, Vol. 486, pp. 334–342, DOI:  https://doi.org/10.1016/j.jhydrol.2013.02.012.Google Scholar
  34. Mirbagheri, S. A., Nourani, V., Rajaee, T., and Alikhani, A. (2010). “Neuro-fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers.” Hydrological Sciences Journal-Journal des Sciences Hydrologiques, Vol. 55, No. 7, pp. 1175–1189, DOI:  https://doi.org/10.1080/02626667.2010.508871.Google Scholar
  35. Modaresi, F. and Araghinejad, S. (2014). “A Comparative assessment of support vector machines, probabilistic neural networks, and K-Nearest neighbor algorithms for water quality classification.” Water Resources Management, Vol. 28, No. 12, pp. 4095–4111, DOI:  https://doi.org/10.4236/jcc.2014.29004.Google Scholar
  36. Nayak, P., Venkatesh, B., Krishna, B., and Jain, S. K. (2013). “Rainfall-runoff modeling using conceptual, data driven, and wavelet based computing approach”. Journal of Hydrology, Vol. 493, pp. 57–67, DOI:  https://doi.org/10.1016/j.jhydrol.2013.04.016.Google Scholar
  37. Noori, R., Abdoli, M., Ghasrodashti, A. A., and Jalili Ghazizade, M. (2009). “Prediction of municipal solid waste generation with combination of support vector machine and principal component analysis: A case study of Mashhad.” Environmental Progress & Sustainable Energy, Vol. 28, No. 2, pp. 249–258, DOI:  https://doi.org/10.1002/ep.10317.Google Scholar
  38. Nourani, V. (2009). “Using artificial neural networks (ANNs) for sediment load forecasting of Talkherood River mouth.” Journal of Urban and Environmental Engineering, Vol. 3, No. 1, pp. 1–6, DOI:  https://doi.org/10.4090/juee.2013.v3n1.MathSciNetGoogle Scholar
  39. Olyaie, E., Banejad, H., Chau, K. W., and Melesse, A. M. (2015). “A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States.” Environmental Monitoring and Assessment, Vol. 187, No. 4, pp. 1–22, DOI:  https://doi.org/10.1007/s10661-015-4381-1.Google Scholar
  40. Partal, T. and Cigizoglu, H. K. (2008). “Estimation and forecasting of daily suspended sediment data using wavelet-neural networks.” Journal of Hydrology, Vol. 358, No. 3, pp. 317–331, DOI:  https://doi.org/10.1016/j.jhydrol.2008.06.013.Google Scholar
  41. Sanikhani, H. and Kisi, O. (2012). “River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches.” Water Resources Management, Vol. 26, No. 6, pp. 1715–1729, DOI:  https://doi.org/10.1007/s11269-012-9982-7.Google Scholar
  42. Sayed, T., Tavakolie, A., and Razavi, A. (2003). “Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models.” Journal of Computing in Civil Engineering, Vol. 17, No. 2, pp. 123–130, DOI:  https://doi.org/10.1007/s11269-012-9982-7.Google Scholar
  43. Shabri, A. and Suhartono. (2012). “Streamflow forecasting using least-squares support vector machines.” Hydrological Sciences Journal, Vol. 57, No. 7, pp. 1275–1293, DOI:  https://doi.org/10.1080/02626667.2012.714468.Google Scholar
  44. Sheikhalipour, Z. and Hassanpour, F. (2013). “Estimation of suspended sediment load using genetic expression programming.” Journal Homepage, Vol. 292, pp. 299.Google Scholar
  45. Singh, A., Imtiyaz, M., Isaac, R., and Denis, D. (2012). “Comparison of artificial neural network models for sediment yield prediction at single gauging station of watershed in eastern India.” Journal of Hydrologic Engineering, Vol. 18, No. 1, pp. 115–120, DOI:  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000601.Google Scholar
  46. Takagi, T. and Sugeno, M. (1985). “Fuzzy identification of systems and its applications to modeling and control.” Systems, Man and Cybernetics, IEEE Transactions On, Vol. No. 1, pp. 116–132, DOI:  https://doi.org/10.1109/TSMC.1985.6313399.zbMATHGoogle Scholar
  47. Talebi, A., Mahjoobi, J., Dastorani, M. T., and Moosavi, V. (2017). “Estimation of suspended sediment load using regression trees and model trees approaches (Case study: Hyderabad drainage basin in Iran).” ISH Journal of Hydraulic Engineering, Vol. 23, No. 2, pp. 212–219, DOI:  https://doi.org/10.1080/09715010.2016.1264894.Google Scholar
  48. Talei, A., Chua, L. H. C., and Quek, C. (2010). “A novel application of a neuro-fuzzy computational technique in event-based rainfall-runoff modeling.” Expert Systems with Applications, Vol. 37, No. 12, pp. 7456–7468, DOI:  https://doi.org/10.1016/j.eswa.2010.04.015.Google Scholar
  49. Vapnik, V., Golowich, S. E., and Smola, A. (1996). “Support vector method for function approximation, regression estimation, and signal processing.” Advances in Neural Information Processing Systems 9, MIT Press, Cambridge, MA, USA.Google Scholar
  50. Vapnik, V. N. and Vapnik, V. (1998). Statistical learning theory, Wiley New York, NY, USA.zbMATHGoogle Scholar
  51. Wieprecht, S., Tolossa, H. G., and Yang, C. T. (2013). “A neuro-fuzzy-based modelling approach for sediment transport computation.” Hydrological Sciences Journal, Vol. 58, No. 3, pp. 587–599, DOI:  https://doi.org/10.1080/02626667.2012.755264.Google Scholar
  52. Wu, C. L. and Chau, K. W. (2011). “Rainfall-runoff modeling using artificial neural network coupled with singular spectrum analysis.” Journal of Hydrology, Vol. 399, Nos. 3–4, pp. 394–409, DOI:  https://doi.org/10.1016/j.jhydrol.2011.01.017.Google Scholar
  53. Yu, P. S., Chen, S. T., and Chang, I. F. (2006). “Support vector regression for real-time flood stage forecasting.” Journal of Hydrology, Vol. 328, No. 3, pp. 704–716, DOI:  https://doi.org/10.1016/j.jhydrol.2006.01.021.Google Scholar
  54. Zhu, Y. M., Lu, X., and Zhou, Y. (2007). “Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China.” Geomorphology, Vol. 84, No. 1, pp. 111–125, DOI:  https://doi.org/10.1016/j.geomorph.2006.07.010.Google Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  • Farzad Hassanpour
    • 1
  • Salman Sharifazari
    • 2
    Email author
  • Khaled Ahmadaali
    • 3
  • Sara Mohammadi
    • 4
  • Zeinab Sheikhalipour
    • 5
  1. 1.Dept. of Water Engineering, Soil and Water FacultyUniversity of ZabolZabolIran
  2. 2.Dept. of Irrigation and Reclamation Engineering, College of Agriculture and Natural ResourcesUniversity of TehranTehranIran
  3. 3.Dept. of Arid and Mountainous Regions Reclamation, College of Agriculture and Natural ResourcesUniversity of TehranTehranIran
  4. 4.Hydro Structures Engineering from Soil and Water Faculty of University of ZabolZabolIran
  5. 5.Irrigation and Drainage from Soil and Water Faculty of University of ZabolZabolIran

Personalised recommendations