Advertisement

KSCE Journal of Civil Engineering

, Volume 23, Issue 4, pp 1626–1635 | Cite as

Analysis of Cable under Dynamic Contact and Large Deformation

  • Bingjian Wang
  • Qingbin LiEmail author
  • Tianyun Liu
  • Weibing Peng
Structural Engineering
  • 51 Downloads

Abstract

For simulating contact interactions and high displacement gradients between the cable and the saddle at the middle tower of triple-tower suspension bridges, a cable element is developed by combining the absolute nodal coordinate formulation and the quasi-conforming technique. New curvature strains are developed and elastic forces are explicitly formulated for the cable elements. Thereafter, it is compared to the original one to verify its locking remedies. The numerical solutions using the element are compared to analytical results and solutions by the original element. Compared to the original, the proposed element suppresses the high-frequency disturbances in the velocity and acceleration curves. Using the element, the contact and sliding behavior between the cable and the saddle is analyzed by employing parameters obtained experimentally. The saddle’s mechanical and frictional performance subjected to different friction coefficients and unbalanced cable forces is investigated. The proposed model exhibits excellent accuracy in the prediction of the sliding force and the contact status between the cable and the saddle.

Keywords

cables dynamics safety ANCF quasi-conforming technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belytschko, T., Liu, W., and Moran, B. (2000). Nonlinear finite elements for continua and structures, John Wiley & Sons, New York, NY, USA, pp. 114–159, DOI: 10.13140/RG.2.1.2800.0089.zbMATHGoogle Scholar
  2. Čepon, G. and Boltežar, M. (2009). “Dynamics of a belt-drive system using a linear complementarity problem for the belt-pulley contact description.” China Civil Engineering Journal, Vol. 319, No. 3, pp. 1019–1035, DOI: 10.1016/j.jsv.2008.07.005.Google Scholar
  3. Čepon, G., Manin, L., and Boltežar, M. (2009). “Introduction of damping into the flexible multibody belt-drive model: A numerical and experimental investigation.” China Civil Engineering Journal, Vol. 324, No. 1, pp. 283–296, DOI: 10.1016/j.jsv.2009.02.001.Google Scholar
  4. Di Renzo, A. and Di Maio, F. P. (2004). “Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes.” China Civil Engineering Journal, Vol. 3, No. 59, pp. 525–541, DOI: 10.1016/j.ces.2003.09.037.Google Scholar
  5. García-Vallejo, D., Mikkola, A. M., and Escalona, J. L. (2007). “A new locking-free shear deformable finite element based on absolute nodal coordinates.” China Civil Engineering Journal, Vol. 50, Nos. 1–2, pp. 249–264, DOI: 10.1007/s11071-006-9155-4.zbMATHGoogle Scholar
  6. Gerstmayr, J., Matikainen, M. K., and Mikkola, A. M. (2008). “A geometrically exact beam element based on the absolute nodal coordinate formulation.” China Civil Engineering Journal, Vol. 20, No. 4, pp. 359–384, DOI: 10.1007/s11044-008-9125-3.MathSciNetzbMATHGoogle Scholar
  7. Guan, Y. and Tang L. M. (1993). “Nonlinear quasi-conforming finite element method.” China Civil Engineering Journal, Vol. 9, No. 3, pp. 269–276, DOI: 10.1007/BF02486804.zbMATHGoogle Scholar
  8. Hasegawa, K., Kojima, H., Sasaki, M., and Takena, K. (1989). “An experimental investigation on friction between cable and saddle of suspension bridge.” China Civil Engineering Journal, Vol. 1989, No. 404, pp. 277–286, DOI: 10.2208/jscej.1989.404_277 (in Japanese).Google Scholar
  9. He, D. S. and Tang, L. M. (2002). “The displacement function of quasi-conforming element and its node error.” China Civil Engineering Journal, Vol. 23, No. 2, pp. 12–137, DOI: 10.1007/BF02436553.MathSciNetzbMATHGoogle Scholar
  10. Ji, L., Chen, C. E., and Feng, Z. X. (2007). “Anti-slip test on cable and saddle on the intermediate tower of the triple-tower suspension bridge.” China Civil Engineering Journal, Vol. 6, pp. 1–6 (in Chinese).Google Scholar
  11. Kerkkänen, K. S., Sopanen, J. T., and Mikkola, A. M. (2005). “A linear beam finite element based on the absolute nodal coordinate formulation.” China Civil Engineering Journal, Vol. 127, No. 4, pp. 621–630, DOI: 10.1115/1.1897406.Google Scholar
  12. Kerkkänen, K. S., García-Vallejo, D., and Mikkola, A. M. (2006). “Modeling of belt-drives using a large deformation finite element formulation.” China Civil Engineering Journal, Vol. 43, No. 3, pp. 239–256, DOI: 10.1007/s11071-006-7749-5.zbMATHGoogle Scholar
  13. Kim, K. W., Lee, J. W., and Yoo, W. S. (2012). “The motion and deformation rate of a flexible hose connected to a mother ship.” China Civil Engineering Journal, Vol. 26, No. 3, pp. 703–710, DOI: 10.1007/s12206-011-1202-5.Google Scholar
  14. Kim, K. D., Lomboy, G. R., and Voyiadjis, G. Z. (2003). “A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom.” China Civil Engineering Journal, Vol. 58, No. 14, pp. 2177–2200, DOI: 10.1002/nme.854.zbMATHGoogle Scholar
  15. Lomboy, G. R., Suthasupradit, S., Kim, K. D., and Oñate, E. (2009). “Nonlinear formulations of a four-node quasi-conforming shell element.” China Civil Engineering Journal, Vol. 16, No. 2, pp. 189–250, DOI: 10.1007/s11831-009-9030-9.zbMATHGoogle Scholar
  16. Lugrís, U., Escalona, J. L., Dopico, D., and Cuadrado, J. (2011). “Efficient and accurate simulation of the rope–sheave interaction in weightlifting machines.” China Civil Engineering Journal, Vol. 225, No. 4, pp. 331–343, DOI: 10.1177/1464419311403224.Google Scholar
  17. Mattiason, K. (1981). “Numerical results from large deflection beam and frame problems analyzed by means of elliptic integrals.” China Civil Engineering Journal, Vol. 17, No. 1, pp. 145–153, DOI: 10.1002/nme.1620170113.Google Scholar
  18. Mikkola, A. M. and Shabana, A. A. (2003). “A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications.” China Civil Engineering Journal, Vol. 9, No. 3, pp. 283–309.MathSciNetzbMATHGoogle Scholar
  19. Nachbagauer, K., Gruber, P., and Gerstmayr, J. (2013). “Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples.” China Civil Engineering Journal, Vol. 8, No. 2, pp. 021004–021015, DOI: 10.1002/nme.1620170113.Google Scholar
  20. Park, T., Kim, K., and Han, S. (2005). “Linear static and dynamic analysis of laminated composite plates and shells using a 4-node quasi-conforming shell element.” China Civil Engineering Journal, Vol. 37, Nos. 2–3, pp. 237–248.Google Scholar
  21. Rade, L. and Westergren, B. (1999). Mathematics handbook for science and engineering, 4th Ed., Springer-Verlag, Berlin Heidelberg, Germany, pp. 205–224, DOI: 10.1007/978-3-662-08549-3.Google Scholar
  22. Ren, H. (2015). “Fast and robust full-quadrature triangular elements for thin plates/shells with large deformations and large rotations.” China Civil Engineering Journal, Vol. 10, No. 5, pp. 051018–051031, DOI: 10.1115/1.4030212.Google Scholar
  23. Ruan, X., Zhou, J., and Caprani, C. C. (2016). “Safety assessment of the antisliding between the main cable and middle saddle of a threepylon suspension bridge considering traffic load modeling.” China Civil Engineering Journal, Vol. 21, No. 10, p. 04016069, DOI:10.1061/(ASCE)BE.1943-5592.0000927.Google Scholar
  24. Sanborn, G. G., Choi, J., and Choi, J. H. (2011). “Curve-induced distortion of polynomial space curves, flat-mapped extension modeling, and their impact on ANCF thin-plate finite elements.” China Civil Engineering Journal, Vol. 26, No. 2, pp. 191–211, DOI: 10.1007/s11044-011-9248-9.MathSciNetzbMATHGoogle Scholar
  25. Schwab, A. L. and Meijaard, J. P. (2005). “Comparison of threedimensional flexible beam elements for dynamic analysis: Finite element method and absolute nodal coordinate formulation.” Proc. 2005 Int. Design Engineering Technical Conf. and Computers and Information in Engineering Conf., ASME, CA, USA, pp. 1341–1349, DOI: 10.1115/DETC2005-85104.Google Scholar
  26. Shabana, A. A. (1996). An absolute nodal coordinate formulation for the large rotation and large deformation analysis of flexible bodies, Report MBS96-1-UIC, Department of Mechanical Engineering, University of Illinois - Chicago, IL, USA.Google Scholar
  27. Shabana, A. A. (1997). “Flexible multibody dynamics: Review of past and recent developments.” China Civil Engineering Journal, Vol. 1, No. 2, pp. 189–222, DOI: 10.1023/A:1009773505418.MathSciNetzbMATHGoogle Scholar
  28. Shabana, A. A. (2015). “Definition of ANCF finite elements.” China Civil Engineering Journal, Vol. 10, No. 5, pp. 054506–054510, DOI: 10.1115/1.4030369.Google Scholar
  29. Shabana, A. A. and Maqueda, L. G. (2008). “Slope discontinuities in the finite element absolute nodal coordinate formulation: Gradient deficient elements.” China Civil Engineering Journal, Vol. 20, No. 3, pp. 239–249, DOI: 10.1007/s11044-008-9111-9.MathSciNetzbMATHGoogle Scholar
  30. Shi, G. and Voyiadjis, G. (1991). “Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness matrix.” China Civil Engineering Journal, Vol. 41, No. 4, pp. 757–763, DOI: 10.1016/0045-7949(91)90185-O.zbMATHGoogle Scholar
  31. Sopanen, J. T. and Mikkola, A. M. (2003). “Description of elastic forces in absolute nodal coordinate formulation.” China Civil Engineering Journal, Vol. 34, Nos. 1–2, pp. 53–74, DOI: 10.1023/B:NODY.0000014552.68786.bc.zbMATHGoogle Scholar
  32. Takena, K., Sasaki, M., Hata, K., and Hasegawa, K. (1992). “Slip behavior of cable against saddle in suspension bridges.” China Civil Engineering Journal, Vol. 118, No. 2, pp. 377–391, DOI: 10.1061/(ASCE)0733-9445.Google Scholar
  33. Tasora, A., Serban, R., Mazhar, H., Pazouki, A., Melanz, D., Fleischmann, J., Taylor, M., Sugiyama, H. and Negrut, D. (2015). “Chrono: An open source multi-physics dynamics engine.” Proc. High Performance Computing in Science and Engineering. HPCSE 2015, Vol. 9611. Springer, Cham, DOI: 10.1007/978-3-319-40361-8_2.Google Scholar
  34. Tur, M., García, E., Baeza, L., and Fuenmayor, F. J. (2014). “A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary.” China Civil Engineering Journal, Vol. 71, No. 1, pp. 234–243, DOI: 10.1016/j.engstruct.2014.04.015.Google Scholar
  35. Valkeapää, A. I., Yamashita, H., Jayakumar, P., and Sugiyama, H. (2015). “On the use of elastic middle surface approach in the large deformation analysis of moderately thick shell structures using absolute nodal coordinate formulation.” China Civil Engineering Journal, Vol. 80, No. 3, pp. 1133–1146, DOI: 10.1007/s11071-015-1931-6.MathSciNetGoogle Scholar
  36. Vohar, B., Kegl, M., and Ren, Z. (2008). “Implementation of an ANCF beam finite element for dynamic response optimization of elastic manipulators.” China Civil Engineering Journal, Vol. 40, No. 12, pp. 1137–1150, DOI: 10.1080/03052150802317457.MathSciNetGoogle Scholar
  37. Wang, C., Hu, P., and Xia, Y. (2012). “A 4-node quasi-conforming Reissner–Mindlin shell element by using Timoshenko’s beam function.” China Civil Engineering Journal, Vol. 61, pp. 12–22, DOI: 10.1016/j.finel.2012.06.003.MathSciNetGoogle Scholar
  38. Wang, Q., Tian, Q., and Hu, H. (2015). “Dynamic simulation of frictional multi-zone contacts of thin beams.” China Civil Engineering Journal, Vol. 83, No. 4, pp. 1–19, DOI: 10.1007/s11071-015-2456-8.Google Scholar
  39. Wasfy, T. and Noor, A. (2003). “Computational strategies for flexible multibody systems.” China Civil Engineering Journal, Vol. 56, No. 6, pp. 553–613, DOI: 10.1080/03052150802317457.Google Scholar
  40. Wei, J. D. and Liu, Z. Y. (2006). “Accurate simulation of cable saddles in structural analysis of suspension bridges.” China Civil Engineering Journal, Vol. 23, No. 7, pp. 114–118 (in Chinese).Google Scholar
  41. Woelke, P., Chan, K. K., Daddazio, R., and Abboud, N. (2012). “Stress resultant based elasto-viscoplastic thick shell model.” China Civil Engineering Journal, Vol. 19, No. 3, pp. 477–492, DOI: 10.3233/SAV-2011-0644.Google Scholar
  42. Yamashita, H., Valkeapää, A. I., Jayakumar, P., and Sugiyama, H. (2015). “Continuum mechanics based bilinear shear deformable shell element using absolute nodal coordinate formulation.” China Civil Engineering Journal, Vol. 10, No. 5, pp. 051012–051024, DOI: 10.1115/1.4028657.Google Scholar
  43. Zhang, Q., Cheng, Z., Cui, C., Bao, Y., He, J., and Li, Q. (2017). “Analytical model for frictional resistance between cable and saddle of suspension bridges equipped with vertical friction plates.” Journal of Bridge Engineering, Vol. 22, No. 1, pp. 1–12, DOI: 10.1061/(ASCE)BE.1943-5592.0000986.CrossRefGoogle Scholar
  44. Zhang, J. W., Guo, W. H., and Xiang, C. Q. (2013). “Dynamic characteristics analysis and parametric study of a super-long-span triple-tower suspension bridge.” China Civil Engineering Journal, Vol. 256, pp. 1627–1634, DOI: 10.4028/www.scientific.net/AMM.256-259.1627.Google Scholar
  45. Zhang, Y., Wei, C., Pan, D., and Zhao, Y. (2016). “A dynamical approach to space capturing procedure using flexible cables.” China Civil Engineering Journal, Vol. 88, No. 1, pp. 53–65, DOI: 10.1108/AEAT-07-2014-0107.Google Scholar
  46. Zhang, Y., Zhao, Y., Tan, C., and Liu, Y. (2016). “Research of strain coupling problem and model decoupling of ANCF cable/beam element.” Chinese Journal of Theoretical and Applied Mechanics, DOI: 10.6052/0459-1879-16-127.Google Scholar

Copyright information

© Korean Society of Civil Engineers 2019

Authors and Affiliations

  • Bingjian Wang
    • 1
    • 2
  • Qingbin Li
    • 1
    Email author
  • Tianyun Liu
    • 1
  • Weibing Peng
    • 3
  1. 1.State Key Lab of Hydro-science and EnginneringTsinghua UniversityBeijingChina
  2. 2.Research Institute of Highway (RIOH)Ministry of TransportationBeijingChina
  3. 3.Dept. of Civil EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations