Advertisement

Biodiesel Production from Waste Cooking Grease: Optimization and Comparative Productivity Assessment

  • Ji Won Na
  • Jae-Cheol Lee
  • Hyun-Woo Kim
Environmental Engineering
  • 4 Downloads

Abstract

This study evaluated the recovery rate of Fatty Acids Methyl Ester (FAME) using various waste cooking greases from local restaurants. The productivity of biodiesel was analyzed based on the FAME contents and profiles according to the source of greases. Adapting a statistical approach, Response Surface Methodology (RSM), various transesterification based on the ratio of catalyst (KOH) and methanol was evaluated experimentally. Results presented a significant difference in total FAME recovery depending on reaction condition. RSM revealed the optimal blending condition of methanol (59−100 ml) and KOH (2.2−3.2 g) for waste cooking greases of bovine, swine, and poultry, which presented similar FAME characteristics when compared with other biodiesels. Optimal conditions for bovine, swine and poultry made the potential of biodiesel recovery from greases as high as 57.0%, 55.3%, and 53.7%, respectively. Overall, suggested optimized transesterification of waste cooking grease prevents unnecessary resource waste and enables the concept of waste-to-energy. It is also eco-friendly due to reduced pollutant emission and fossil fuel substitution.

Keywords

transesterification waste cooking grease biodiesel response surface methodology waste to energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjumea, P., Agudelo, J. R., and Agudelo, A. F. (2011). “Effect of the degree of unsaturation of biodiesel fuels on engine performance, combustion characteristics, and emissions.” Energy & Fuels, ACS Publications, Vol. 25, No. 1, pp. 77–85, DOI:10.1021/ef101096x.CrossRefGoogle Scholar
  2. Bhaskar, T., Chang, J. S., Khanal, S., Lee, D. J., Venkata Mohan, S., and Rittmann, B. E. (2016). “Waste biorefinery - advocating circular economy.” Bioresource Technology, Vol. 215, pp. 1, DOI: 10.1016/j.biortech.2016.06.020.CrossRefGoogle Scholar
  3. Canakci, M. (2007). “The potential of restaurant waste lipids as biodiesel feedstocks.” Bioresource Technology, Vol. 98, No. 1, pp. 183–190, DOI: 10.1016/j.biortech.2005.11.022.CrossRefGoogle Scholar
  4. Canoira, L., Rodriguez-Gamero, M., Querol, E., Alcantara, R., Lapuerta, M., and Oliva, F. (2008). “Biodiesel from low-grade animal fat: Production process assessment and biodiesel properties characterization.” Industrial & Engineering Chemistry Research, Vol. 47, No. 21, pp. 7997–8004, DOI:10.1021/ie8002045.CrossRefGoogle Scholar
  5. FAO (2013}). Current worldwide annual meat consumption per capita, Livestock and Fish Primary Equivalent, Food and Agriculture Organization of the United NationsGoogle Scholar
  6. Guru, M., Artukoglu, B. D., Keskin, A., and Koca, A. (2009). “Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive.” Energy conversion and Management, Vol. 50, No. 3, pp. 498–502, DOI: 10.1016/j.enconman.2008.11.001.CrossRefGoogle Scholar
  7. Guru, M., Koca, A., Can, O., Cinar, C., and Sahin, F. (2010). “Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine.” Renewable Energy, Vol. 35, No. 3, pp. 637–643, DOI: 10.1016/j.renene.2009.08.011.CrossRefGoogle Scholar
  8. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M. (2012). “Review of biodiesel composition, properties, and specifications.” Renewable & Sustainable Energy Reviews, Vol. 16, No. 1, pp. 143–169, DOI: 10.1016/j.rser.2011.07.143.CrossRefGoogle Scholar
  9. Kim, H. W., Shin, H. S., Han, S. K., and Oh, S. E. (2007). “Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste.” Journal of the Air & Waste Management Association, Vol. 57, No. 3, pp. 309–318, DOI: 10.1080/10473289.2007.10465334.CrossRefGoogle Scholar
  10. Knothe, G. (2002). “Structure indices in FA chemistry. How relevant is the iodine value?” Journal of the American Oil Chemists’ Society, Vol. 79, No. 9, pp. 847–854, DOI: 10.1007/s11746-002-0569-4.CrossRefGoogle Scholar
  11. Krisnangkura, K. (1986). “A simple method for estimation of cetane index of vegetable oil methyl-esters.” Journal of the American Oil Chemists Society, Vol. 63, No. 4, pp. 552–553, DOI: 10.1007/Bf02645752.CrossRefGoogle Scholar
  12. Lee, T.-S., Lee, Y.-H., Kim, K.-S., Kim, W., Kim, K.-S., Jang, Y.-S., and Park, K.-G. (2012). “Yield and characterization of various biodiesel from vegetable oils and animal fats.” Journal of the Korean society for New and Renewable Energy, Vol. 8, No. 4, pp. 30–37, DOI: 10.7849/ksnre.2012.8.4.030.CrossRefGoogle Scholar
  13. Montgomery, D. C. (2008). Design and analysis of experiments, 7th Ed. John Wiley & Sons, New York, NY, USA.Google Scholar
  14. Rago, Y. P., Surroop, D., and Mohee, R. (2018). “Assessing the potential of biofuel (biochar) production from food wastes through thermal treatment.” Bioresource Technology, Vol. 248, pp. 258–264, DOI: 10.1016/j.biortech.2017.06.108.CrossRefGoogle Scholar
  15. Ramirez-Verduzco, L. F., Rodriguez-Rodriguez, J. E., and Jaramillo-Jacob, A. D. (2012). “Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition.” Fuel, Vol. 91, No. 1, pp. 102–111, DOI: 10.1016/j.fuel.2011.06.070.CrossRefGoogle Scholar
  16. Ramos, M. J., Fernandez, C. M., Casas, A., Rodriguez, L., and Perez, A. (2009). “Influence of fatty acid composition of raw materials on biodiesel properties.” Bioresource Technology, Vol. 100, No. 1, pp. 261–268, DOI: 10.1016/j.biortech.2008.06.039.CrossRefGoogle Scholar
  17. Rittmann, B. E. (2008). “Opportunities for renewable bioenergy using microorganisms.” Biotechnology and Bioengineering, Vol. 100, No. 2, pp. 203–212, DOI:10.1002/bit.21875.CrossRefGoogle Scholar
  18. Sarin, A., Arora, R., Singh, N. P., Sarin, R., Malhotra, R. K., and Kundu, K. (2009). “Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point.” Energy, Vol. 34, No. 11, pp. 2016–2021, DOI: 10.1016/j.energy.2009.08.017.CrossRefGoogle Scholar
  19. Schober, S., Seidl, I., and Mittelbach, M. (2006). “Ester content evaluation in biodiesel from animal fats and lauric oils.” European Journal of Lipid Science and Technology, Vol. 108, No. 4, pp. 309–314, DOI: 10.1002/ejlt.200500324.CrossRefGoogle Scholar
  20. Schutter, M. E. and Dick, R. P. (2000). “Comparison of Fatty Acid Methyl Ester (FAME) methods for characterizing microbial communities.” Soil Science Society of America Journal, Vol. 64, No. 5, pp. 1659–1668, DOI: 10.2136/sssaj2000.6451659x.CrossRefGoogle Scholar
  21. Tran, T. T., Kaiprommarat, S., Kongparakul, S., Reubroycharoen, P., Guan, G., Nguyen, M. H., and Samart, C. (2016). “Green biodiesel production from waste cooking oil using an environmentally benign acid catalyst.” Waste Management, Vol. 52, pp. 367–374, DOI: 10.1016/j.wasman.2016.03.053.CrossRefGoogle Scholar
  22. Vicente, G., Coteron, A., Martinez, M., and Aracil, J. (1998). “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production.” Industrial crops and products, Vol. 8, No. 1, pp. 29–35, DOI: 10.1016/S0926-6690(97)10003-6.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dept. of Environmental EngineeringChonbuk National UniversityJeonjuKorea

Personalised recommendations